Adaptive perturbed neighbourhood search for the expanding capacity multiple-choice knapsack problem

被引:8
作者
Sbihi, A. [1 ]
机构
[1] Axe Logist Terre Mer Risque, Ecole Management Normandie, F-76087 Le Havre, Haute Normandie, France
关键词
combinatorial optimization; integer programming; knapsack; multiple-choice; expanding; metaheuristics; DYNAMIC-PROGRAMMING APPROACH; LOCAL SEARCH; ALGORITHM;
D O I
10.1057/jors.2012.130
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we develop a perturbed reactive-based neighbourhood search algorithm for the expanding constraint multiple-choice knapsack problem. It combines reactive tabu search with some specific neighbourhood search strategies to approximately solve the problem. The tests were conducted on randomly generated instances and executed in comparable benchmark scenarios to those of the literature. The results outperform those of the Cplex solver and demonstrate the high quality of the two approach versions.
引用
收藏
页码:1461 / 1473
页数:13
相关论文
共 29 条
[11]   A reactive local search-based algorithm for the multiple-choice multi-dimensional knapsack problem [J].
Hifi, M ;
Michrafy, M ;
Sbihi, A .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2006, 33 (2-3) :271-285
[12]   Heuristic algorithms for the multiple-choice multidimensional knapsack problem [J].
Hifi, M ;
Michrafy, M ;
Sbihi, A .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2004, 55 (12) :1323-1332
[13]  
Hiremath Chaitr S., 2007, International Journal of Operational Research, V2, P495, DOI 10.1504/IJOR.2007.014176
[14]  
Hiremath CS, 2004, THESIS WRIGHT STATE
[15]  
Kellerer H., 2004, KNAPSACK PROBLEMS, DOI DOI 10.1007/978-3-540-24777-710
[16]  
Khan S., 2002, STUDIA INFORMATICA S, V2, P157
[17]  
Kirshner S., 2011, MIT SLOAN SPORTS AN, V2011
[18]   A dynamic programming approach to the multiple-choice multi-period knapsack problem and the recursive APL2 code [J].
Lin, Edward Y. H. ;
Chen, M. C. .
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2010, 31 (02) :289-303
[19]   The multiple-choice multi-period knapsack problem [J].
Lin, EY ;
Wu, CM .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2004, 55 (02) :187-197
[20]   Dynamic programming and strong bounds for the 0-1 knapsack problem [J].
Martello, S ;
Pisinger, D ;
Toth, P .
MANAGEMENT SCIENCE, 1999, 45 (03) :414-424