A study of new solvable few body problems

被引:8
|
作者
Bachkhaznadji, A. [1 ]
Lassaut, M. [2 ]
Lombard, R. J. [2 ]
机构
[1] Univ Mentouri, Dept Phys, Phys Theor Lab, Constantine, Algeria
[2] Univ Paris 11, Inst Phys Nucl, CNRS, Grp Phys Theor,UMR8608, F-91406 Orsay, France
关键词
ONE-DIMENSION; 3-BODY INTERACTION; CALOGERO TYPE; POTENTIALS; MODEL; RENORMALIZATION;
D O I
10.1088/1751-8113/42/6/065301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study new solvable few body problems consisting of generalizations of the Calogero and the Calogero-Marchioro-Wolfes three-body problems, by introducing non-translationally invariant three-body potentials. After separating the radial and angular variables by appropriate coordinate transformations, we provide eigensolutions of the Schrodinger equation with the corresponding energy spectrum. We found a domain of the coupling constant for which the irregular solutions are square integrable.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Entanglement Properties of Bound and Resonant Few-Body States
    Kuros, Arkadiusz
    Okopinska, Anna
    QUANTUM SYSTEMS IN PHYSICS, CHEMISTRY AND BIOLOGY - THEORY, INTERPRETATION, AND RESULTS, 2019, 78 : 31 - 55
  • [22] Exactly Solvable N-Body Quantum Systems with N=3k (k ≥ 2) in the D=1 Dimensional Space
    Bachkhaznadji, A.
    Lassaut, M.
    FEW-BODY SYSTEMS, 2016, 57 (09) : 773 - 791
  • [23] On an Exactly Solvable Two-Body Problem in Two-Dimensional Quantum Mechanics
    Kezerashvili, Roman Ya.
    Luo, Jianning
    Malvino, Claudio R.
    FEW-BODY SYSTEMS, 2023, 64 (04)
  • [24] The anisotropic oscillator on curved spaces: A new exactly solvable model
    Ballesteros, Angel
    Herranz, Francisco J.
    Kuru, Sengul
    Negro, Javier
    ANNALS OF PHYSICS, 2016, 373 : 399 - 423
  • [25] Few-Body Problem in Nuclear Reactions Beyond the horizon of the three-body Faddeev equations
    Oryu, Shinsho
    Hiratsuka, Yasuhisa
    Watanabe, Takashi
    CNR*15 - 5TH INTERNATIONAL WORKSHOP ON COMPOUND-NUCLEAR REACTIONS AND RELATED TOPICS, 2016, 122
  • [26] Few-Body Effects in Elastic Scattering of Light Exotic Nuclei
    Denikin, A. S.
    Descouvemont, P.
    Zagrebaev, V. I.
    INTERNATIONAL SYMPOSIUM ON EXOTIC NUCLEI 2009, 2010, 1224 : 118 - +
  • [27] Treatment comparisons for decision making: facing the problems of sparse and few data
    Soares, Marta O.
    Dumville, Jo C.
    Ades, A. E.
    Welton, Nicky J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2014, 177 (01) : 259 - 279
  • [28] A new two-parameter family of exactly solvable Dirac Hamiltonians
    Pozdeeva, E. O.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 159 (02) : 618 - 626
  • [29] Aggregation beyond the gel point: A new class of exactly solvable models
    P. G. J. van Dongen
    Journal of Statistical Physics, 1997, 87 : 1273 - 1286
  • [30] Selection of solitons coinciding the numerical solutions for uniquely solvable physical problems: A comparative study for the nonlinear stochastic Gross-Pitaevskii equation in dispersive media
    Baber, Muhammad Z.
    Seadway, Aly R.
    Ahmed, Nauman
    Iqbal, Muhammad S.
    Yasin, Muhammad W.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022,