Quantization of gauge fields, graph polynomials and graph homology

被引:20
作者
Kreimer, Dirk [1 ]
Sars, Matthias [1 ]
van Suijlekom, Walter D. [2 ]
机构
[1] Humboldt Univ, D-10099 Berlin, Germany
[2] Radboud Univ Nijmegen, NL-6525 AJ Nijmegen, Netherlands
关键词
Gauge theory; Graph homology; Covariant quantization; FEYNMAN-RULES; HOPF ALGEBRA; RENORMALIZATION; SPIN;
D O I
10.1016/j.aop.2013.04.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial - we call it cycle homology - and by graph homology. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:180 / 222
页数:43
相关论文
共 25 条
  • [1] Aluffi P., ARXIV09073225V1MATHP
  • [2] [Anonymous], ARXIV11121180HEPTH
  • [3] Ultraviolet cancellations in half-maximal supergravity as a consequence of the double-copy structure
    Bern, Zvi
    Davies, Scott
    Dennen, Tristan
    Huang, Yu-tin
    [J]. PHYSICAL REVIEW D, 2012, 86 (10):
  • [4] On motives associated to graph polynomials
    Bloch, Spencer
    Esnault, Helene
    Kreimer, Dirk
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (01) : 181 - 225
  • [5] Bloch S, 2010, COMMUN NUMBER THEORY, V4, P709
  • [6] Direct proof of the tree-level scattering amplitude recursion relation in Yang-Mills theory
    Britto, R
    Cachazo, F
    Feng, B
    Witten, E
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (18)
  • [7] Broadhurst D., ARXIV10044238PHYSICS
  • [8] Brown F., ARXIV12030188MATHAG
  • [9] Brown F., ARXIV12081890MATHNT
  • [10] Brown F. C. S., ARXIV09100114MATHAG