COMPLEX INTERPOLATION ON BESOV-TYPE AND TRIEBEL-LIZORKIN-TYPE SPACES

被引:35
作者
Yang, Dachun [1 ]
Yuan, Wen [1 ]
Zhuo, Ciqiang [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Complex interpolation; Besov-type space; Triebel-Lizorkin-type space; Besov-Morrey space; sequence space; quasi-Banach lattice; Calderon product; MORREY SPACES; DECOMPOSITIONS; EQUATIONS; DUALITY; REAL;
D O I
10.1142/S0219530513500218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let theta is an element of (0, 1), s(0), s(1) is an element of R, tau(0), tau(1) is an element of [0, infinity), p(0), p(1) is an element of (0, infinity), q(0), q(1) is an element of (0, infinity], s = s(0)(1 - theta) + s(1)theta, tau = tau(0)(1 - theta) + tau(1)theta, 1/p = 1-theta/p(0) + theta/p(1) and 1/q = 1-theta/q(0) + theta/q(1). In this paper, under the restriction tau(0)/p(1) = tau(1)/p(0), the authors establish the complex interpolation, on Triebel-Lizorkin-type spaces, that [(F) over circle (s0,tau 0)(p0,q0) (R-n), (F) over circle (s1,tau 1)(p1,q1) (R-n)](theta) = (F) over circle (s,tau)(p,q)(R-n) = [F-p0,q0(s0,tau 0) (R-n), (F) over circle (s1,tau 1)(p1,q1) (R-n)](theta) = [(F) over circle (s0,tau 0)(p0,q0) (R-n), F-p1,q1(s1 tau 1) (R-n)](theta), where (F) over circle (s,tau)(p,q) (R-n) denotes the closure of the Schwartz functions in F-p,q(s,tau) (R-n). Similar results on Besov-type spaces and Besov-Morrey spaces are also presented. As a corollary, the authors obtain the complex interpolation for Morrey spaces that, for all 1 < p(0) <= u(0) < infinity, 1 < p(1) <= u(1) < infinity and 1 < p <= u < infinity such that 1/u = 1-theta/u(0) + theta/u(1), 1/p = 1-theta/p(0) + theta/p(1) and p(0)u(1) = p(1)u(0), [(M) over circle (u0)(p0)(R-n), (M) over circle (u1)(p1)(R-n)](theta) = (M) over circle (u)(p)(R-n) = [M-p0(u0)(R-n), (M) over circle (u1)(p1)(R-n)](theta) = [(M) over circle (u0)(p0)(R-n), M-p1(u1)(R-n)](theta), where (M) over circle (p)(u)(R-n) denotes the closure of the Schwartz space in M-u(p)(R-n). It is known that, if p(0)u(1) not equal p(1)u(0), these conclusions on Morrey spaces may not be true.
引用
收藏
页数:45
相关论文
共 50 条
  • [1] [Anonymous], 1976, Duke Univ. Math. Series
  • [2] [Anonymous], 1979, ERGEBNISSE MATH IHRE
  • [3] [Anonymous], 1976, GRUNDLEHREN MATH WIS
  • [4] [Anonymous], 2010, Theory of Function Spaces
  • [5] Aoki T., 1942, P IMP ACAD TOKYO, V18, P588, DOI DOI 10.3792/PIA/1195573733
  • [6] Blasco O., 1999, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V4, P31
  • [7] Duality and interpolation of anisotropic Triebel-Lizorkin spaces
    Bownik, Marcin
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (01) : 131 - 169
  • [8] Calderon A.P., 1963, Studia Math. (Ser. Specjalna) Zeszyt, V1, P31
  • [9] On the connection between real and complex interpolation of quasi-Banach spaces
    Cobos, F
    Peetre, J
    Persson, LE
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (01): : 17 - 37
  • [10] Some new tent spaces and duality theorems for fractional Carleson measures and Qα(Rn)
    Dafni, G
    Xiao, J
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (02) : 377 - 422