Particle filtering approximations for a Gaussian-generalized inverse Gaussian model

被引:3
作者
Ferrante, Marco [1 ]
Frigo, Nadia [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
[2] Univ Padua, Dipartimento Sci Stat, I-35121 Padua, Italy
关键词
TIME;
D O I
10.1016/j.spl.2008.09.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the filtering problem for a class of discrete-time partially observable stochastic processes. Under strong conditions on the parameters involved and on the initial condition, we are able to prove that it admits a finite dimensional filter. Relaxing these assumptions, we use a Rao Blackwellization procedure to perform a Particle filtering approximation of the filtering distribution, then we prove its convergence and extend this study to a jump Markov model. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:442 / 449
页数:8
相关论文
共 15 条
[1]   Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions [J].
Andrieu, C ;
Davy, M ;
Doucet, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (07) :1762-1770
[2]  
[Anonymous], 1982, Statistical Properties of the Generalized Inverse Gaussian Distribution
[3]  
Barndorff-Nielsen O.E, 1997, Finance Stoch, V2, P41, DOI DOI 10.1007/S007800050032
[4]  
BARNDORFFNIELSE.OE, 1980, STAT DISTRIBUTIONS S, V4, P19
[5]   Rao-Blackwellisation of sampling schemes [J].
Casella, G ;
Robert, CP .
BIOMETRIKA, 1996, 83 (01) :81-94
[6]  
Crisan D., 2000, CONVERGENCE SEQUENTI
[7]  
Doucet A., 2001, Sequential Monte Carlo methods in practice, V1
[8]  
Doucet A., 2000, C UNCERTAINTY ARTIFI, P176
[9]   Finite dimensional filters for nonlinear stochastic difference equations with multiplicative noises [J].
Ferrante, M ;
Vidoni, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 77 (01) :69-81
[10]  
FERRANTE M, 1999, STOCHASTIC PROCESS A, V1, P165