Particle-Based Anisotropic Surface Meshing

被引:72
作者
Zhong, Zichun [1 ]
Guo, Xiaohu [1 ]
Wang, Wenping [2 ]
Levy, Bruno [3 ]
Sun, Feng [2 ]
Liu, Yang
Mao, Weihua [4 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
[2] Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[3] INRIA Nancy Grand Est, Nancy, France
[4] Univ Texas SW Med Ctr Dallas, Dallas, TX USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2013年 / 32卷 / 04期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Anisotropic Meshing; Particle; Gaussian Kernel; CENTROIDAL VORONOI TESSELLATIONS; METRIC SPECIFICATIONS; GENERATION;
D O I
10.1145/2461912.2461946
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper introduces a particle-based approach for anisotropic surface meshing. Given an input polygonal mesh endowed with a Riemannian metric and a specified number of vertices, the method generates a metric-adapted mesh. The main idea consists of mapping the anisotropic space into a higher dimensional isotropic one, called "embedding space". The vertices of the mesh are generated by uniformly sampling the surface in this higher dimensional embedding space, and the sampling is further regularized by optimizing an energy function with a quasi-Newton algorithm. All the computations can be re-expressed in terms of the dot product in the embedding space, and the Jacobian matrices of the mappings that connect different spaces. This transform makes it unnecessary to explicitly represent the coordinates in the embedding space, and also provides all necessary expressions of energy and forces for efficient computations. Through energy optimization, it naturally leads to the desired anisotropic particle distributions in the original space. The triangles are then generated by computing the Restricted Anisotropic Voronoi Diagram and its dual Delaunay triangulation. We compare our results qualitatively and quantitatively with the state-of-the-art in anisotropic surface meshing on several examples, using the standard measurement criteria.
引用
收藏
页数:14
相关论文
共 55 条
[41]  
Mount D.M., 1997, CGC Workshop on Computational Geometry, P33
[42]   C-1 ISOMETRIC IMBEDDINGS [J].
NASH, J .
ANNALS OF MATHEMATICS, 1954, 60 (03) :383-396
[43]   Surface segmentation using geodesic centroidal tesselation [J].
Peyré, G ;
Cohen, L .
2ND INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS, 2004, :995-1002
[44]   Geodesic Methods in Computer Vision and Graphics [J].
Peyre, Gabriel ;
Pechaud, Mickael ;
Keriven, Renaud ;
Cohen, Laurent D. .
FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION, 2009, 5 (3-4) :197-397
[45]   Adaptive smoothed particle hydrodynamics, with application to cosmology: Methodology [J].
Shapiro, PR ;
Martel, H ;
Villumsen, JV ;
Owen, M .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1996, 103 (02) :269-330
[46]  
Shewchuk JR, 2002, P 11 INT MESH ROUNDT, P115
[47]  
Shimada K., 1995, Proceedings. Third Symposium on Solid Modeling and Applications, P409, DOI 10.1145/218013.218095
[48]  
Shimada K., 1997, 6th International Meshing Roundtable, P375
[49]   ANISOTROPIC MESH TRANSFORMATIONS AND OPTIMAL ERROR CONTROL [J].
SIMPSON, RB .
APPLIED NUMERICAL MATHEMATICS, 1994, 14 (1-3) :183-198
[50]   Obtuse triangle suppression in anisotropic meshes [J].
Sun, Feng ;
Choi, Yi-King ;
Wang, Wenping ;
Yan, Dong-Ming ;
Liu, Yang ;
Levy, Bruno .
COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (09) :537-548