Photoinduced Heating of Nanoparticle Arrays

被引:350
作者
Baffou, Guillaume [1 ]
Berto, Pascal [1 ]
Urena, Esteban Bermudez [2 ]
Quidant, Romain [2 ,3 ]
Monneret, Serge [1 ]
Polleux, Julien [4 ]
Rigneault, Herve [1 ]
机构
[1] Aix Marseille Univ, Cent Marseille, Inst Fresnel, CNRS,UMR 7249, F-13013 Marseille, France
[2] ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[3] ICREA, Barcelona 08010, Spain
[4] Max Planck Inst Biochem, Dept Mol Med, D-82152 Martinsried, Germany
关键词
plasmonics; arrays; photothermal; temperature microscopy; wavefront sensing; femtosecond pulse; ENHANCED RAMAN-SCATTERING; GOLD NANOPARTICLES; SYSTEMS; STEP;
D O I
10.1021/nn401924n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The temperature distribution throughout arrays of illuminated metal nanoparticles is investigated numerically and experimentally. The two cases of continuous and femtosecond-pulsed illumination are addressed. In the case of continuous illumination, two distinct regimes are evidenced: a temperature confinement regime, where the temperature increase remains confined at the vicinity of each nanosource of heat, and a temperature delocalization regime, where the temperature is uniform throughout the whole nanoparticle assembly despite the heat sources nanometric size. We show that the occurrence of one regime or another simply depends on the geometry of the nanoparticle distribution. In particular, we derived (i) simple expressions of dimensionless parameters aimed at predicting the degree of temperature confinement and (ii) analytical expressions aimed at estimating the actual temperature increase at the center of an assembly of nanoparticles under illumination, preventing heavy numerical simulations. All these theoretical results are supported by experimental measurements of the temperature distribution on regular arrays of gold nanoparticles under illumination. In the case of femtosecond-pulsed illumination, we explain the two conditions that must be fulfilled to observe a further enhanced temperature spatial confinement.
引用
收藏
页码:6478 / 6488
页数:11
相关论文
共 50 条
  • [41] On the Surface Plasmon Resonance Modes of Metal Nanoparticle Chains and Arrays
    Simsek, Ergun
    PLASMONICS, 2009, 4 (03) : 223 - 230
  • [42] Plasmonic surface lattice resonances in arrays of metallic nanoparticle dimers
    Humphrey, A. D.
    Barnes, W. L.
    JOURNAL OF OPTICS, 2016, 18 (03)
  • [43] Optical Impedance Matching Using Coupled Plasmonic Nanoparticle Arrays
    Spinelli, P.
    Hebbink, M.
    de Waele, R.
    Black, L.
    Lenzmann, F.
    Polman, A.
    NANO LETTERS, 2011, 11 (04) : 1760 - 1765
  • [44] Silver Nanoparticle Gradient Arrays: Fluorescence Enhancement of Organic Dyes
    Sindram, Julian
    Volk, Kirsten
    Mulvaney, Paul
    Karg, Matthias
    LANGMUIR, 2019, 35 (26) : 8776 - 8783
  • [45] Manipulating Energy Landscapes To Tune Ordering in Biotemplated Nanoparticle Arrays
    Shindel, Matthew M.
    Mumm, Daniel R.
    Wang, Szu-Wen
    LANGMUIR, 2011, 27 (12) : 7768 - 7775
  • [46] Patterned Plasmonic Nanoparticle Arrays for Microfluidic and Multiplexed Biological Assays
    He, Jie
    Boegli, Michelle
    Bruzas, Ian
    Lum, William
    Sagle, Laura
    ANALYTICAL CHEMISTRY, 2015, 87 (22) : 11407 - 11414
  • [47] Formation of plasmonic nanoparticle arrays -rules and recipes for an ordered growth
    Fleischer, Karsten
    Ualibek, Oral
    Verre, Ruggero
    Shvets, Igor V.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (02): : 198 - 205
  • [48] Plasmon dispersion in self-organized Au nanoparticle arrays
    Anghinolfi, L.
    Mattera, L.
    Canepa, M.
    Bisio, F.
    PHYSICAL REVIEW B, 2012, 85 (23):
  • [49] Immunosensing platform based on gallium nanoparticle arrays on silicon substrates
    Garcia Marin, Antonio
    Jesus Hernandez, Maria
    Ruiz, Eduardo
    Maria Abad, Jose
    Lorenzo, Encarnacion
    Piqueras, Juan
    Luis Pau, Jose
    BIOSENSORS & BIOELECTRONICS, 2015, 74 : 1069 - 1075
  • [50] Spontaneous formation of size-selected bimetallic nanoparticle arrays
    Bardotti, Laurent
    Tournus, Florent
    Pellarin, Michel
    Broyer, Michel
    Melinon, Patrice
    Dupuis, Veronique
    SURFACE SCIENCE, 2012, 606 (1-2) : 110 - 114