Photoinduced Heating of Nanoparticle Arrays

被引:349
|
作者
Baffou, Guillaume [1 ]
Berto, Pascal [1 ]
Urena, Esteban Bermudez [2 ]
Quidant, Romain [2 ,3 ]
Monneret, Serge [1 ]
Polleux, Julien [4 ]
Rigneault, Herve [1 ]
机构
[1] Aix Marseille Univ, Cent Marseille, Inst Fresnel, CNRS,UMR 7249, F-13013 Marseille, France
[2] ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[3] ICREA, Barcelona 08010, Spain
[4] Max Planck Inst Biochem, Dept Mol Med, D-82152 Martinsried, Germany
关键词
plasmonics; arrays; photothermal; temperature microscopy; wavefront sensing; femtosecond pulse; ENHANCED RAMAN-SCATTERING; GOLD NANOPARTICLES; SYSTEMS; STEP;
D O I
10.1021/nn401924n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The temperature distribution throughout arrays of illuminated metal nanoparticles is investigated numerically and experimentally. The two cases of continuous and femtosecond-pulsed illumination are addressed. In the case of continuous illumination, two distinct regimes are evidenced: a temperature confinement regime, where the temperature increase remains confined at the vicinity of each nanosource of heat, and a temperature delocalization regime, where the temperature is uniform throughout the whole nanoparticle assembly despite the heat sources nanometric size. We show that the occurrence of one regime or another simply depends on the geometry of the nanoparticle distribution. In particular, we derived (i) simple expressions of dimensionless parameters aimed at predicting the degree of temperature confinement and (ii) analytical expressions aimed at estimating the actual temperature increase at the center of an assembly of nanoparticles under illumination, preventing heavy numerical simulations. All these theoretical results are supported by experimental measurements of the temperature distribution on regular arrays of gold nanoparticles under illumination. In the case of femtosecond-pulsed illumination, we explain the two conditions that must be fulfilled to observe a further enhanced temperature spatial confinement.
引用
收藏
页码:6478 / 6488
页数:11
相关论文
共 50 条
  • [1] Spatiotemporal Evolution of Temperature During Transient Heating of Nanoparticle Arrays
    Xie, Chen
    Qin, Zhenpeng
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2022, 144 (03):
  • [2] Optical Epitaxial Growth of Gold Nanoparticle Arrays
    Huang, Ningfeng
    Martinez, Luis Javier
    Jaquay, Eric
    Nakano, Aiichiro
    Povinelli, Michelle L.
    NANO LETTERS, 2015, 15 (09) : 5841 - 5845
  • [3] Spatial localization of nanoparticle growth in photoinduced nanocomposites
    Smirnov, Anton A.
    Pikulin, Alexander
    Bityurin, Nikita
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (02):
  • [4] Tunable Nanoparticle Arrays at Charged Interfaces
    Srivastava, Sunita
    Nykypanchuk, Dmytro
    Fukuto, Masafumi
    Gang, Oleg
    ACS NANO, 2014, 8 (10) : 9857 - 9866
  • [5] Photoinduced processes in chromophore-gold nanoparticle assemblies
    Kotiaho, Anne
    Lahtinen, Riikka
    Lemmetyinen, Helge
    PURE AND APPLIED CHEMISTRY, 2011, 83 (04) : 813 - 821
  • [6] Modelling lasing in plasmonic nanoparticle arrays
    Martikainen, J-P
    Hakala, T. K.
    Rekola, H. T.
    Torma, P.
    JOURNAL OF OPTICS, 2016, 18 (02)
  • [7] Self-assembled nanoparticle arrays for multiphase trace analyte detection
    Cecchini, Michael P.
    Turek, Vladimir A.
    Paget, Jack
    Kornyshev, Alexei A.
    Edel, Joshua B.
    NATURE MATERIALS, 2013, 12 (02) : 165 - 171
  • [8] Confinement effects on the solar thermal heating process of TiN nanoparticle solutions
    Phan, Anh D.
    Le, Nam B.
    Nghiem, T. H. Lien
    Woods, Lilia M.
    Ishii, Satoshi
    Wakabayashi, Katsunori
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (36) : 19915 - 19920
  • [9] Plasmonic Nanoparticle Arrays with Nanometer Separation for High-Performance SERS Substrates
    Theiss, Jesse
    Pavaskar, Prathamesh
    Echternach, Pierre M.
    Muller, Richard E.
    Cronin, Stephen B.
    NANO LETTERS, 2010, 10 (08) : 2749 - 2754
  • [10] An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces
    Persechini, L.
    Verre, R.
    McAlinden, N.
    Wang, J. J.
    Ranjan, M.
    Facsko, S.
    Shvets, I. V.
    McGilp, J. F.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (14)