Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data

被引:5
|
作者
Wei, Nana [1 ]
Nie, Yating [1 ]
Liu, Lin [2 ]
Zheng, Xiaoqi [3 ,4 ]
Wu, Hua-Jun [5 ,6 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, SJTU Yale Joint Ctr Biostat & Data Sci, CMA Shanghai, Inst Nat Sci,MOE LSC,Sch Math Sci, Shanghai, Peoples R China
[3] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Ctr Single Cell Omics, Sch Publ Hlth, Sch Med, Shanghai, Peoples R China
[5] Peking Univ Hlth Sci Ctr, Ctr Precis Med Multiom Res, Sch Basic Med Sci, Beijing, Peoples R China
[6] Peking Univ Canc Hosp & Inst, Beijing, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
HETEROGENEITY; TRANSCRIPTOMES; FATE;
D O I
10.1371/journal.pcbi.1010753
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes prompts for a more (computationally) efficient clustering method. Here, we introduce Secuer, a Scalable and Efficient speCtral clUstERing algorithm for scRNA-seq data. By employing an anchor-based bipartite graph representation algorithm, Secuer enjoys reduced runtime and memory usage over one order of magnitude for datasets with more than 1 million cells. Meanwhile, Secuer also achieves better or comparable accuracy than competing methods in small and moderate benchmark datasets. Furthermore, we showcase that Secuer can also serve as a building block for a new consensus clustering method, Secuer-consensus, which again improves the runtime and scalability of state-of-the-art consensus clustering methods while also maintaining the accuracy. Overall, Secuer is a versatile, accurate, and scalable clustering framework suitable for small to ultra-large single-cell clustering tasks. Author summary Recently, single-cell RNA sequencing (scRNA-seq) has enabled profiling of thousands to millions of cells, spurring the development of efficient clustering algorithms for large or ultra-large datasets. In this work, we developed an ultrafast clustering method, Secuer, for small to ultra-large scRNA-seq data. Using simulation and real datasets, we demonstrated that Secuer yields high accuracy, while saving runtime and memory usage by orders of magnitude, and that it can be efficiently scaled up to ultra-large datasets. Additionally, with Secuer as a subroutine, we proposed Secuer-consensus, a consensus clustering algorithm. Our results show that Secuer-consensus performs better in terms of clustering accuracy and runtime.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] scDFC: A deep fusion clustering method for single-cell RNA-seq data
    Hu, Dayu
    Liang, Ke
    Zhou, Sihang
    Tu, Wenxuan
    Liu, Meng
    Liu, Xinwang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [22] Publisher Correction: Challenges in unsupervised clustering of single-cell RNA-seq data
    Vladimir Yu Kiselev
    Tallulah S. Andrews
    Martin Hemberg
    Nature Reviews Genetics, 2019, 20 : 310 - 310
  • [23] Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model
    Liu, Zhenqiu
    GENES, 2021, 12 (02) : 1 - 12
  • [24] scGAC: a graph attentional architecture for clustering single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    BIOINFORMATICS, 2022, 38 (08) : 2187 - 2193
  • [25] Clustering and visualization of single-cell RNA-seq data using path metrics
    Manousidaki, Andriana
    Little, Anna
    Xie, Yuying
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (05)
  • [26] Single-cell RNA-seq data clustering: A survey with performance comparison study
    Li, Ruiyi
    Guan, Jihong
    Zhou, Shuigeng
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2020, 18 (04)
  • [27] Consensus clustering of single-cell RNA-seq data by enhancing network affinity
    Cui, Yaxuan
    Zhang, Shaoqiang
    Liang, Ying
    Wang, Xiangyun
    Ferraro, Thomas N.
    Chen, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [28] SC3: consensus clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Kirschner, Kristina
    Schaub, Michael T.
    Andrews, Tallulah
    Yiu, Andrew
    Chandra, Tamir
    Natarajan, Kedar N.
    Reik, Wolf
    Barahona, Mauricio
    Green, Anthony R.
    Hemberg, Martin
    NATURE METHODS, 2017, 14 (05) : 483 - +
  • [29] Clustering single-cell RNA-seq data by rank constrained similarity learning
    Mei, Qinglin
    Li, Guojun
    Su, Zhengchang
    BIOINFORMATICS, 2021, 37 (19) : 3235 - 3242
  • [30] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11