Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data

被引:5
|
作者
Wei, Nana [1 ]
Nie, Yating [1 ]
Liu, Lin [2 ]
Zheng, Xiaoqi [3 ,4 ]
Wu, Hua-Jun [5 ,6 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, SJTU Yale Joint Ctr Biostat & Data Sci, CMA Shanghai, Inst Nat Sci,MOE LSC,Sch Math Sci, Shanghai, Peoples R China
[3] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Ctr Single Cell Omics, Sch Publ Hlth, Sch Med, Shanghai, Peoples R China
[5] Peking Univ Hlth Sci Ctr, Ctr Precis Med Multiom Res, Sch Basic Med Sci, Beijing, Peoples R China
[6] Peking Univ Canc Hosp & Inst, Beijing, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金; 国家重点研发计划;
关键词
HETEROGENEITY; TRANSCRIPTOMES; FATE;
D O I
10.1371/journal.pcbi.1010753
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes prompts for a more (computationally) efficient clustering method. Here, we introduce Secuer, a Scalable and Efficient speCtral clUstERing algorithm for scRNA-seq data. By employing an anchor-based bipartite graph representation algorithm, Secuer enjoys reduced runtime and memory usage over one order of magnitude for datasets with more than 1 million cells. Meanwhile, Secuer also achieves better or comparable accuracy than competing methods in small and moderate benchmark datasets. Furthermore, we showcase that Secuer can also serve as a building block for a new consensus clustering method, Secuer-consensus, which again improves the runtime and scalability of state-of-the-art consensus clustering methods while also maintaining the accuracy. Overall, Secuer is a versatile, accurate, and scalable clustering framework suitable for small to ultra-large single-cell clustering tasks. Author summary Recently, single-cell RNA sequencing (scRNA-seq) has enabled profiling of thousands to millions of cells, spurring the development of efficient clustering algorithms for large or ultra-large datasets. In this work, we developed an ultrafast clustering method, Secuer, for small to ultra-large scRNA-seq data. Using simulation and real datasets, we demonstrated that Secuer yields high accuracy, while saving runtime and memory usage by orders of magnitude, and that it can be efficiently scaled up to ultra-large datasets. Additionally, with Secuer as a subroutine, we proposed Secuer-consensus, a consensus clustering algorithm. Our results show that Secuer-consensus performs better in terms of clustering accuracy and runtime.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Global Similarity Learning for Clustering of Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Guo, Lilu
    Xu, Yunpei
    Li, Hong-Dong
    Liao, Xingyu
    Wu, Fang-Xiang
    Peng, Xiaoqing
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 261 - 266
  • [2] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [3] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [4] Consensus clustering of single-cell RNA-seq data by enhancing network affinity
    Cui, Yaxuan
    Zhang, Shaoqiang
    Liang, Ying
    Wang, Xiangyun
    Ferraro, Thomas N.
    Chen, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [5] Single-cell RNA-seq data clustering: A survey with performance comparison study
    Li, Ruiyi
    Guan, Jihong
    Zhou, Shuigeng
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2020, 18 (04)
  • [6] SC3: consensus clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Kirschner, Kristina
    Schaub, Michael T.
    Andrews, Tallulah
    Yiu, Andrew
    Chandra, Tamir
    Natarajan, Kedar N.
    Reik, Wolf
    Barahona, Mauricio
    Green, Anthony R.
    Hemberg, Martin
    NATURE METHODS, 2017, 14 (05) : 483 - +
  • [7] Clustering single-cell RNA-seq data by rank constrained similarity learning
    Mei, Qinglin
    Li, Guojun
    Su, Zhengchang
    BIOINFORMATICS, 2021, 37 (19) : 3235 - 3242
  • [8] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11
  • [9] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [10] Improving Single-Cell RNA-seq Clustering by Integrating Pathways
    Zhang, Chenxing
    Gao, Lin
    Wang, Bingbo
    Gao, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)