Analysis of Cigarette Purchase Task Instrument Data With a Left-Censored Mixed Effects Model

被引:20
|
作者
Liao, Wenjie [1 ,2 ]
Luo, Xianghua [1 ]
Le, Chap T. [1 ]
Chu, Haitao [1 ]
Epstein, Leonard H. [3 ]
Yu, Jihnhee [4 ]
Ahluwalia, Jasjit S. [5 ,6 ]
Thomas, Janet L. [7 ]
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Sociol, Minneapolis, MN 55455 USA
[3] SUNY Buffalo, Sch Med & Biomed Sci, Dept Pediat, Buffalo, NY 14260 USA
[4] SUNY Buffalo, Sch Publ Hlth & Hlth Profess, Dept Biostat, Buffalo, NY 14260 USA
[5] Univ Minnesota, Ctr Hlth Equ, Minneapolis, MN 55455 USA
[6] Univ Minnesota, Dept Med, Minneapolis, MN 55455 USA
[7] Univ Minnesota, Dept Med, Div Gen Internal Med, Minneapolis, MN 55455 USA
关键词
cigarette purchase task; college smoking; demand curve; left-censored mixed effects model; relative reinforcing efficacy; RELATIVE REINFORCING EFFICACY; ECONOMIC DEMAND; ALCOHOL; NICOTINE; HEROIN;
D O I
10.1037/a0031610
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The drug purchase task is a frequently used instrument for measuring the relative reinforcing efficacy (RRE) of a substance, a central concept in psychopharmacological research. Although a purchase task instrument, such as the cigarette purchase task (CPT), provides a comprehensive and inexpensive way to assess various aspects of a drug's RRE, the application of conventional statistical methods to data generated from such an instrument may not be adequate by simply ignoring or replacing the extra zeros or missing values in the data with arbitrary small consumption values, for example, 0.001. We applied the left-censored mixed effects model to CPT data from a smoking cessation study of college students and demonstrated its superiority over the existing methods with simulation studies. Theoretical implications of the findings, limitations of the proposed method, and future directions of research are also discussed.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 50 条
  • [21] The inverse power Lindley distribution in the presence of left-censored data
    Coelho-Barros, Emilio A.
    Mazucheli, Josmar
    Achcar, Jorge A.
    Parede Barco, Kelly Vanessa
    Tovar Cuevas, Jose Rafael
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (11) : 2081 - 2094
  • [22] Comparison of Methods for Analyzing Left-Censored Occupational Exposure Data
    Tran Huynh
    Ramachandran, Gurumurthy
    Banerjee, Sudipto
    Monteiro, Joao
    Stenzel, Mark
    Sandler, Dale P.
    Engel, Lawrence S.
    Kwok, Richard K.
    Blair, Aaron
    Stewart, Patricia A.
    ANNALS OF OCCUPATIONAL HYGIENE, 2014, 58 (09): : 1126 - 1142
  • [23] A systematic review on the use of methods for left-censored biomarker data
    Thiele, Dominik
    Koenig, Inke R.
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 521 - 522
  • [24] Conditional decomposition diagnostics for regression analysis of zero-inflated and left-censored data
    Yang, Yan
    Simpson, Douglas G.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2012, 21 (04) : 393 - 408
  • [25] Censored linear model in high dimensionsPenalised linear regression on high-dimensional data with left-censored response variable
    Patric Müller
    Sara van de Geer
    TEST, 2016, 25 : 75 - 92
  • [26] Analysis of left-censored quantitative outcome:: example of procalcitonin level
    Asselineau, J.
    Thiebaut, R.
    Perez, P.
    Pinganaud, G.
    Chene, G.
    REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 2007, 55 (03): : 213 - 220
  • [27] A Multiple Imputation Approach for Estimating Rank Correlation With Left-Censored Data
    Williamson, John M.
    Crawford, Sara B.
    Lin, Hung-Mo
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2010, 2 (04): : 540 - 548
  • [28] Method for analyzing left-censored bioassay data in large cohort studies
    Anderson, Jeri L.
    Apostoaei, A. Iulian
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2017, 27 (01) : 1 - 6
  • [29] Method for analyzing left-censored bioassay data in large cohort studies
    Jeri L Anderson
    A Iulian Apostoaei
    Journal of Exposure Science & Environmental Epidemiology, 2017, 27 : 1 - 6
  • [30] A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data
    Tran Huynh
    Quick, Harrison
    Ramachandran, Gurumurthy
    Banerjee, Sudipto
    Stenzel, Mark
    Sandler, Dale P.
    Engel, Lawrence S.
    Kwok, Richard K.
    Blair, Aaron
    Stewart, Patricia A.
    ANNALS OF OCCUPATIONAL HYGIENE, 2016, 60 (01): : 56 - 73