Distributional chaos for operators with full scrambled sets

被引:33
作者
Martinez-Gimenez, Felix [1 ]
Oprocha, Piotr [2 ,3 ]
Peris, Alfredo [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, IUMPA, Valencia 46022, Spain
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
Distributional chaos; Hypercyclic operators; Irregular vectors;
D O I
10.1007/s00209-012-1087-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we answer in the negative the question of whether hypercyclicity is sufficient for distributional chaos for a continuous linear operator (we even prove that the mixing property does not suffice). Moreover, we show that an extremal situation is possible: There are (hypercyclic and non-hypercyclic) operators such that the whole space consists, except zero, of distributionally irregular vectors.
引用
收藏
页码:603 / 612
页数:10
相关论文
共 19 条
[1]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[2]   Distributionally chaotic translation semigroups [J].
Barrachina, Xavier ;
Peris, Alfred .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) :751-761
[3]  
Bayart F, 2009, DYNAMICS LINEAR OPER
[4]  
Beauzamy B., 1988, North-Holland Math Library
[5]   Li-Yorke and distributionally chaotic operators [J].
Bermudez, T. ;
Bonilla, A. ;
Martinez-Gimenez, F. ;
Peris, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :83-93
[6]   Topologically mixing hypercyclic operators [J].
Costakis, G ;
Sambarino, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) :385-389
[7]  
Devaney R. L., 2018, An introduction to chaotic dynamical systems
[8]   Hypercyclicity and supercyclicity for invertible bilateral weighted shift [J].
Feldman, NS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) :479-485
[9]  
Grosse-Erdmann K.-G., 2011, Linear Chaos
[10]   Hypercyclic and chaotic weighted shifts [J].
Grosse-Erdmann, KG .
STUDIA MATHEMATICA, 2000, 139 (01) :47-68