Individual dynamic prediction and prognostic analysis for long-term allograft survival after kidney transplantation

被引:2
|
作者
Huang, Baoyi [1 ]
Huang, Mingli [2 ]
Zhang, Chengfeng [1 ]
Yu, Zhiyin [1 ]
Hou, Yawen [3 ]
Miao, Yun [2 ]
Chen, Zheng [1 ]
机构
[1] Southern Med Univ, Sch Publ Hlth, Dept Biostat, Guangdong Prov Key Lab OfTrop Dis Res, Guangzhou 510515, Peoples R China
[2] Southern Med Univ, Nanfang Hosp, Dept Transplantat, Guangzhou 510515, Peoples R China
[3] Jinan Univ, Sch Econ, Dept Stat, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic prediction; Kidney transplantation; Longitudinal biomarkers; Precise medicine; Individual prediction; RENAL-TRANSPLANTATION; GRAFT-SURVIVAL; RECIPIENTS; MODELS; LANDMARKING; MORTALITY; ANEMIA;
D O I
10.1186/s12882-022-02996-0
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Predicting allograft survival is vital for efficient transplant success. With dynamic changes in patient conditions, clinical indicators may change longitudinally, and doctors' judgments may be highly variable. It is necessary to establish a dynamic model to precisely predict the individual risk/survival of new allografts. Methods The follow-up data of 407 patients were obtained from a renal allograft failure study. We introduced a landmarking-based dynamic Cox model that incorporated baseline values (age at transplantation, sex, weight) and longitudinal changes (glomerular filtration rate, proteinuria, hematocrit). Model performance was evaluated using Harrell's C-index and the Brier score. Results Six predictors were included in our analysis. The Kaplan-Meier estimates of survival at baseline showed an overall 5-year survival rate of 87.2%. The dynamic Cox model showed the individual survival prediction with more accuracy at different time points (for the 5-year survival prediction, the C-index = 0.789 and Brier score = 0.065 for the average of all time points) than the static Cox model at baseline (C-index = 0.558, Brier score = 0.095). Longitudinal covariate prognostic analysis (with time-varying effects) was performed. Conclusions The dynamic Cox model can utilize clinical follow-up data, including longitudinal patient information. Dynamic prediction and prognostic analysis can be used to provide evidence and a reference to better guide clinical decision-making for applying early treatment to patients at high risk.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] The value of long-term protocol biopsies after kidney transplantation
    Tanabe, Tatsu
    NEPHROLOGY, 2014, 19 : 2 - 5
  • [32] Incidence and Long-Term Prognosis of Cancer After Kidney Transplantation
    Pendon-Ruiz de Mier, V.
    Navarro Cabello, M. D.
    Martinez Vaquera, S.
    Lopez-Andreu, M.
    Aguera Morales, M. L.
    Rodriguez-Benot, A.
    Aljama Garcia, P.
    TRANSPLANTATION PROCEEDINGS, 2015, 47 (09) : 2618 - 2621
  • [33] The Impact of Hypomagnesemia on the Long-Term Evolution After Kidney Transplantation
    Ratiu, Ioana Adela
    Moisa, Corina
    Marc, Luciana
    Olariu, Nicu
    Ratiu, Cristian Adrian
    Bako, Gabriel Cristian
    Ratiu, Anamaria
    Fratila, Simona
    Teusdea, Alin Cristian
    Ganea, Mariana
    Indries, Mirela
    Filip, Lorena
    NUTRIENTS, 2025, 17 (01)
  • [34] Projecting Long-Term Graft and Patient Survival after Transplantation
    Levy, Adrian R.
    Briggs, Andrew H.
    Johnston, Karissa
    MacLean, J. Ross
    Yuan, Yong
    L'Italien, Gilbert J.
    Kalsekar, Anupama
    Schnitzler, Matk A.
    VALUE IN HEALTH, 2014, 17 (02) : 254 - 260
  • [35] Personalized Prognostic Risk Score for Long-Term Survival for Children with Acute Leukemia after Allogeneic Transplantation
    Bitan, Menachem
    Ahn, Kwang Woo
    Millard, Heather R.
    Pulsipher, Michael A.
    Abdel-Azim, Hisham
    Auletta, Jeffery J.
    Brown, Valerie
    Chan, Ka Wah
    Diaz, Miguel Angel
    Dietz, Andrew
    Vincent, Marta Gonzalez
    Guilcher, Gregory
    Hale, Gregory A.
    Hayashi, Robert J.
    Keating, Amy
    Mehta, Parinda
    Myers, Kasiani
    Page, Kristin
    Prestidge, Tim
    Shah, Nirali N.
    Smith, Angela R.
    Woolfrey, Ann
    Thiel, Elizabeth
    Davies, Stella M.
    Eapen, Mary
    BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2017, 23 (09) : 1523 - 1530
  • [36] Bariatric surgery before and after kidney transplantation: long-term weight loss and allograft outcomes
    Cohen, Jordana B.
    Lim, Mary Ann
    Tewksbury, Colleen M.
    Torres-Landa, Samuel
    Trofe-Clark, Jennifer
    Abt, Peter L.
    Williams, Noel N.
    Dumon, Kristoffel R.
    Goral, Simin
    SURGERY FOR OBESITY AND RELATED DISEASES, 2019, 15 (06) : 935 - 941
  • [37] Long-term outcome after early cyclosporine withdrawal in kidney transplantation: ten years after
    Tabibzadeh, Nahid
    Glowacki, Francois
    Frimat, Marie
    Elsermans, Vincent
    Provot, Francois
    Lionet, Arnaud
    Gnemmi, Viviane
    Hertig, Alexandre
    Noeel, Christian
    Hazzan, Marc
    CLINICAL TRANSPLANTATION, 2016, 30 (11) : 1480 - 1487
  • [38] Tacrolimus trough-level variability predicts long-term allograft survival following kidney transplantation
    O'Regan, John A.
    Canney, Mark
    Connaughton, Dervla M.
    O'Kelly, Patrick
    Williams, Yvonne
    Collier, Geraldine
    deFreitas, Declan G.
    O'Seaghdha, Conall M.
    Conlon, Peter J.
    JOURNAL OF NEPHROLOGY, 2016, 29 (02) : 269 - 276
  • [39] Comparison of the long-term outcomes of kidney transplantation: USA versus Spain
    Ojo, Akinlolu O.
    Maria Morales, Jose
    Gonzalez-Molina, Miguel
    Steffick, Diane E.
    Luan, Fu L.
    Merion, Robert M.
    Ojo, Tammy
    Moreso, Francesc
    Arias, Manuel
    Maria Campistol, Josep
    Hernandez, Domingo
    Seron, Daniel
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 (01) : 213 - 220
  • [40] Functional Fc Gamma Receptor Gene Polymorphisms and Long-Term Kidney Allograft Survival
    Wahrmann, Markus
    Dohler, Bernd
    Arnold, Marie-Luise
    Scherer, Sabine
    Mayer, Katharina A.
    Haindl, Susanne
    Haslacher, Helmuth
    Boehmig, Georg A.
    Suesal, Caner
    FRONTIERS IN IMMUNOLOGY, 2021, 12