Individual dynamic prediction and prognostic analysis for long-term allograft survival after kidney transplantation

被引:3
作者
Huang, Baoyi [1 ]
Huang, Mingli [2 ]
Zhang, Chengfeng [1 ]
Yu, Zhiyin [1 ]
Hou, Yawen [3 ]
Miao, Yun [2 ]
Chen, Zheng [1 ]
机构
[1] Southern Med Univ, Sch Publ Hlth, Dept Biostat, Guangdong Prov Key Lab OfTrop Dis Res, Guangzhou 510515, Peoples R China
[2] Southern Med Univ, Nanfang Hosp, Dept Transplantat, Guangzhou 510515, Peoples R China
[3] Jinan Univ, Sch Econ, Dept Stat, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic prediction; Kidney transplantation; Longitudinal biomarkers; Precise medicine; Individual prediction; RENAL-TRANSPLANTATION; GRAFT-SURVIVAL; RECIPIENTS; MODELS; LANDMARKING; MORTALITY; ANEMIA;
D O I
10.1186/s12882-022-02996-0
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Predicting allograft survival is vital for efficient transplant success. With dynamic changes in patient conditions, clinical indicators may change longitudinally, and doctors' judgments may be highly variable. It is necessary to establish a dynamic model to precisely predict the individual risk/survival of new allografts. Methods The follow-up data of 407 patients were obtained from a renal allograft failure study. We introduced a landmarking-based dynamic Cox model that incorporated baseline values (age at transplantation, sex, weight) and longitudinal changes (glomerular filtration rate, proteinuria, hematocrit). Model performance was evaluated using Harrell's C-index and the Brier score. Results Six predictors were included in our analysis. The Kaplan-Meier estimates of survival at baseline showed an overall 5-year survival rate of 87.2%. The dynamic Cox model showed the individual survival prediction with more accuracy at different time points (for the 5-year survival prediction, the C-index = 0.789 and Brier score = 0.065 for the average of all time points) than the static Cox model at baseline (C-index = 0.558, Brier score = 0.095). Longitudinal covariate prognostic analysis (with time-varying effects) was performed. Conclusions The dynamic Cox model can utilize clinical follow-up data, including longitudinal patient information. Dynamic prediction and prognostic analysis can be used to provide evidence and a reference to better guide clinical decision-making for applying early treatment to patients at high risk.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Hemoglobin, Ferritin levels and RBC Indices among children entering school and study of their correlation with one another [J].
Ahmad, Mirza Sultan ;
Fatima, Rida ;
Farooq, Hadia ;
Maham, Sumaira Noor .
JOURNAL OF THE PAKISTAN MEDICAL ASSOCIATION, 2020, 70 (09) :1582-1586
[2]  
[Anonymous], 2012, Dynamic Prediction in Clinical Survival Analysis
[3]   An introduction to joint models-applications in nephrology [J].
Chesnaye, Nicholas C. ;
Tripepi, Giovanni ;
Dekker, Friedo W. ;
Zoccali, Carmine ;
Zwinderman, Aeilko H. ;
Jager, Kitty J. .
CLINICAL KIDNEY JOURNAL, 2020, 13 (02) :143-149
[4]   Impact of anemia after renal transplantation on patient and graft survival and on rate of acute rejection [J].
Chhabra, Darshika ;
Grafals, Monica ;
Skaro, Anton I. ;
Parker, Michele ;
Gallon, Lorenzo .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2008, 3 (04) :1168-1174
[5]   Survival analysis: time-dependent effects and time-varying risk factors [J].
Dekker, Friedo W. ;
de Mutsert, Renee ;
van Dijk, Paul C. ;
Zoccali, Carmine ;
Jager, Kitty J. .
KIDNEY INTERNATIONAL, 2008, 74 (08) :994-997
[6]   Individual dynamic predictions using landmarking and joint modelling: Validation of estimators and robustness assessment [J].
Ferrer, Loic ;
Putter, Hein ;
Proust-Lima, Cecile .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (12) :3649-3666
[7]   Dynamic predictions of long-term kidney graft failure: an information tool promoting patient-centred care [J].
Fournier, Marie-Cecile ;
Foucher, Yohann ;
Blanche, Paul ;
Legendre, Christophe ;
Girerd, Sophie ;
Ladriere, Marc ;
Morelon, Emmanuel ;
Buron, Fanny ;
Rostaing, Lionel ;
Kamar, Nassim ;
Mourad, Georges ;
Garrigue, Valerie ;
Couvrat-Desvergnes, Gregoire ;
Giral, Magali ;
Dantan, Etienne ;
Blancho, Gilles ;
Branchereau, Julien ;
Cantarovich, Diego ;
Chapelet, Agnes ;
Dantal, Jacques ;
Deltombe, Clement ;
Figueres, Lucile ;
Garandeau, Claire ;
Gourraud-Vercel, Caroline ;
Hourmant, Maryvonne ;
Karam, Georges ;
Kerleau, Clarisse ;
Meurette, Aurelie ;
Ville, Simon ;
Kandell, Christine ;
Moreau, Anne ;
Renaudin, Karine ;
Cesbron, Anne ;
Delbos, Florent ;
Walencik, Alexandre ;
Devis, Anne ;
Amrouche, Lucile ;
Anglicheau, Dany ;
Aubert, Olivier ;
Bererhi, Lynda ;
Loupy, Alexandre ;
Martinez, Frank ;
Sberro-Soussan, Rebecca ;
Scemla, Anne ;
Tinel, Claire ;
Zuber, Julien ;
Eschwege, Pascal ;
Frimat, Luc ;
Hubert, Jacques ;
Laurain, Emmanuelle .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2019, 34 (11) :1961-1969
[8]  
Graf E, 1999, STAT MED, V18, P2529
[9]  
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
[10]  
2-4