Gradient-Based Adaptive Stochastic Search for Simulation Optimization Over Continuous Space

被引:6
|
作者
Zhou, Enlu [1 ]
Bhatnagar, Shalabh [2 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
基金
美国国家科学基金会;
关键词
simulation optimization; model-based optimization; two-timescale stochastic approximation; APPROXIMATION;
D O I
10.1287/ijoc.2017.0771
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We extend the idea of model-based algorithms for deterministic optimization to simulation optimization over continuous space. Model-based algorithms iteratively generate a population of candidate solutions from a sampling distribution and use the performance of the candidate solutions to update the sampling distribution. By viewing the original simulation optimization problem as another optimization problem over the parameter space of the sampling distribution, we propose to use a direct gradient search on the parameter space to update the sampling distribution. To improve the computational efficiency, we further develop a two-timescale updating scheme that updates the parameter on a slow timescale and estimates the quantities involved in the parameter updating on the fast timescale. We analyze the convergence properties of our algorithms through techniques from stochastic approximation, and demonstrate the good empirical performance by comparing with two state-of-the-art model-based simulation optimization methods.
引用
收藏
页码:154 / 167
页数:14
相关论文
共 50 条
  • [1] SIMULATION OPTIMIZATION VIA GRADIENT-BASED STOCHASTIC SEARCH
    Zhou, Enlu
    Bhatnagar, Shalabh
    Chen, Xi
    PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 3869 - 3879
  • [2] Discrete optimization via gradient-based adaptive stochastic search methods
    Chen, Xi
    Zhou, Enlu
    Hu, Jiaqiao
    IISE TRANSACTIONS, 2018, 50 (09) : 789 - 805
  • [3] Gradient-Based Adaptive Stochastic Search for Non-Differentiable Optimization
    Zhou, Enlu
    Hu, Jiaqiao
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (07) : 1818 - 1832
  • [4] COMBINING GRADIENT-BASED OPTIMIZATION WITH STOCHASTIC SEARCH
    Zhou, Enlu
    Hu, Jiaqiao
    2012 WINTER SIMULATION CONFERENCE (WSC), 2012,
  • [5] Gradient-based simulation optimization
    Kim, Sujin
    PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2006, : 159 - 167
  • [6] ON THE ADAPTIVITY OF STOCHASTIC GRADIENT-BASED OPTIMIZATION
    Lei, Lihua
    Jordan, Michael I.
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1473 - 1500
  • [7] A self-adaptive and gradient-based cuckoo search algorithm for global optimization
    She, Bin
    Fournier, Aime
    Yao, Mengjie
    Wang, Yaojun
    Hu, Guangmin
    APPLIED SOFT COMPUTING, 2022, 122
  • [8] Gradient-based optimization for quantum architecture search
    He, Zhimin
    Wei, Jiachun
    Chen, Chuangtao
    Huang, Zhiming
    Situ, Haozhen
    Li, Lvzhou
    NEURAL NETWORKS, 2024, 179
  • [9] Gradient-Based Cuckoo Search for Global Optimization
    Fateen, Seif-Eddeen K.
    Bonilla-Petriciolet, Adrian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [10] OPTIMIZING CONDITIONAL VALUE-AT-RISK VIA GRADIENT-BASED ADAPTIVE STOCHASTIC SEARCH
    Zhu, Helin
    Hale, Joshua
    Zhou, Enlu
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 726 - 737