Hierarchical On-Surface Synthesis of Graphene Nanoribbon Heterojunctions

被引:74
作者
Bronner, Christopher [1 ]
Durr, Rebecca A. [2 ]
Rizzo, Daniel J. [1 ]
Lee, Yea-Lee [1 ,3 ]
Marangoni, Tomas [2 ]
Kalayjian, Alin Miksi [2 ]
Rodriguez, Henry [1 ]
Zhao, William [1 ]
Louie, Steven G. [1 ,4 ]
Fischer, Felix R. [2 ,4 ,5 ,6 ]
Crommie, Michael F. [1 ,4 ,5 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Pohang Univ Sci & Technol, Dept Phys, Pohang 37673, Kyungbuk, South Korea
[4] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
graphene nanoribbon; on-surface synthesis; heterojunction; hierarchical growth; bottom-up fabrication; electronic structure; BOTTOM-UP FABRICATION; BAND-GAP; ELECTRONIC-PROPERTIES; CARBON NANOTUBES; GROWTH; FUNCTIONALIZATION; SPECTROSCOPY; PRECURSOR;
D O I
10.1021/acsnano.7b08658
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bottom-up graphene nanoribbon (GNR) heterojunctions are nanoscale strips of graphene whose electronic structure abruptly changes across a covalently bonded interface. Their rational design offers opportunities for profound technological advancements enabled by their extraordinary structural and electronic properties. Thus far, the most critical aspect of their synthesis, the control over sequence and position of heterojunctions along the length of a ribbon, has been plagued by randomness in monomer sequences emerging from step-growth copolymerization of distinct monomers. All bottom-up GNR heterojunction structures created so far have exhibited random sequences of heterojunctions and, while useful for fundamental scientific studies, are difficult to incorporate into functional nanodevices as a result. In contrast, we describe a hierarchical fabrication strategy that allows the growth of bottom-up GNRs that preferentially exhibit a single heterojunction interface rather than a random statistical sequence of junctions along the ribbon. Such heterojunctions provide a viable platform that could be directly used in functional GNR-based device applications at the molecular scale. Our hierarchical GNR fabrication strategy is based on differences in the dissociation energies of C-Br and C-I bonds that allow control over the growth sequence of the block copolymers from which GNRs are formed and consequently yields a significantly higher proportion of single-junction GNR heterostructures. Scanning tunneling spectroscopy and density functional theory calculations confirm that hierarchically grown heterojunctions between chevron GNR (cGNR) and binaphthyl-cGNR segments exhibit straddling Type I band alignment in structures that are only one atomic layer thick and 3 nm in width.
引用
收藏
页码:2193 / 2200
页数:8
相关论文
共 39 条
[1]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[2]   Probing the mechanism for graphene nanoribbon formation on gold surfaces through X-ray spectroscopy [J].
Batra, Arunabh ;
Cvetko, Dean ;
Kladnik, Gregor ;
Adak, Olgun ;
Cardoso, Claudia ;
Ferretti, Andrea ;
Prezzi, Deborah ;
Molinari, Elisa ;
Morgante, Alberto ;
Venkataraman, Latha .
CHEMICAL SCIENCE, 2014, 5 (11) :4419-4423
[3]   Bottom-up graphene nanoribbon field-effect transistors [J].
Bennett, Patrick B. ;
Pedramrazi, Zahra ;
Madani, Ali ;
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. ;
Bokor, Jeffrey .
APPLIED PHYSICS LETTERS, 2013, 103 (25)
[4]   Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity [J].
Bieri, Marco ;
Nguyen, Manh-Thuong ;
Groening, Oliver ;
Cai, Jinming ;
Treier, Matthias ;
Ait-Mansour, Kamel ;
Ruffieux, Pascal ;
Pignedoli, Carlo A. ;
Passerone, Daniele ;
Kastler, Marcel ;
Muellen, Klaus ;
Fasel, Roman .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (46) :16669-16676
[5]   Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion [J].
Bronner, Christopher ;
Marangoni, Tomas ;
Rizzo, Daniel J. ;
Durr, Rebecca A. ;
Jorgensen, Jakob Holm ;
Fischer, Felix R. ;
Crommie, Michael F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (34) :18490-18495
[6]   Aligning the Band Gap of Graphene Nanoribbons by Monomer Doping [J].
Bronner, Christopher ;
Stremlau, Stephan ;
Gille, Marie ;
Brausse, Felix ;
Haase, Anton ;
Hecht, Stefan ;
Tegeder, Petra .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (16) :4422-4425
[7]  
Cai JM, 2014, NAT NANOTECHNOL, V9, P896, DOI [10.1038/NNANO.2014.184, 10.1038/nnano.2014.184]
[8]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[9]  
Chen YC, 2015, NAT NANOTECHNOL, V10, P156, DOI [10.1038/NNANO.2014.307, 10.1038/nnano.2014.307]
[10]   Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors [J].
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Pedramrazi, Zahra ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. .
ACS NANO, 2013, 7 (07) :6123-6128