Approximate quantum and acoustic cloaking

被引:15
作者
Greenleaf, Allan [1 ]
Kurylev, Yaroslav [2 ]
Lassas, Matti [3 ]
Uhlmann, Gunther [4 ,5 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] UCL, Dept Math Sci, London WC1E 6BT, England
[3] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[5] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
芬兰科学院; 美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Invisibility cloaking; quantum mechanics; Helmholtz equation; homogenization; INVERSE-SCATTERING PROBLEM; GLOBAL UNIQUENESS; FIXED-ENERGY; POTENTIALS; INVISIBILITY; EQUATIONS; HOMOGENIZATION;
D O I
10.4171/JST/2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any E >= 0, we construct a sequence of bounded potentials V-n(E), n is an element of N, supported in an annular region B-out \ B-in subset of R-3, which act as approximate cloaks for solutions of Schrodinger's equation at energy E: for any potential V-0 is an element of L-infinity(B-in) such that E is not a Neumann eigenvalue of -Delta + V-0 in B-in, the scattering amplitudes alpha(V0)+V-n(E) (E, theta, omega) -> 0 as n -> infinity. The V-n(E) n thus not only form a family of approximately transparent potentials, but also function as approximate invisibility cloaks in quantum mechanics. On the other hand, for E close to interior eigenvalues, resonances develop and there exist almost trapped states concentrated in B-in. We derive the V-n(E) n from singular, anisotropic transformation optics-based cloaks by a de-anisotropization procedure, which we call isotropic transformation optics. This technique uses truncation, inverse homogenization and spectral theory to produce nonsingular, isotropic approximate cloaks. As an intermediate step, we also obtain approximate cloaking for a general class of equations including the acoustic equation.
引用
收藏
页码:27 / 80
页数:54
相关论文
共 74 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
ALLAIRE G., 1995, P INT C MATH MODELLI, P15
[3]   Cloaking a Sensor [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[4]  
Aronszajn N., 1957, J. Math. Pures Appl., V36, P235
[5]  
Attouch H., 1984, APPL MATH SERIES
[6]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[7]  
Berezanski Ju.M., 1958, Trudy Moskovskogo Matematiceskogo Obscestva, V7, P1
[8]   Recovering a potential from Cauchy data in the two-dimensional case [J].
Bukhgeim, A. L. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (01) :19-33
[10]  
Chen H., 2008, PHYS REV B, V77