Thermal ionization and thermally activated crossover quenching processes for 5d-4f luminescence in Y3Al5-xGaxO12 : Pr3+

被引:76
作者
Ueda, Jumpei [1 ,2 ,3 ,4 ]
Meijerink, Andries [4 ]
Dorenbos, Pieter [3 ]
Bos, Adrie J. J. [3 ]
Tanabe, Setsuhisa [1 ]
机构
[1] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto 6068501, Japan
[2] Kyoto Univ, Grad Sch Global Environm Studies, Kyoto 6068501, Japan
[3] Delft Univ Technol, Fac Sci Appl, Sect FAME RST, Luminescence Mat Res Grp, NL-2629 JB Delft, Netherlands
[4] Univ Utrecht, Debye Inst, NL-3508 TA Utrecht, Netherlands
关键词
EXCITATION SPECTROSCOPY; ELECTRONIC-STRUCTURE; OPTICAL-PROPERTIES; ENERGY-TRANSFER; SINGLE-CRYSTAL; CE3+; PHOSPHORS; SOLIDS; SHIFT; HOST;
D O I
10.1103/PhysRevB.95.014303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigated thermally activated ionization and thermally activated crossover as the two possibilities of quenching of 5d luminescence in Pr3+-doped Y3Al5-xGaxO12. Varying the Ga content x gives the control over the relative energy level location of the 5d and 4f(2) : P-3(J) states of Pr3+ and the host conduction band (CB). Temperature-dependent luminescence lifetime measurements show that the 5d luminescence quenching temperature T-50% increases up to x = 2 and decreases with further increasing Ga content. This peculiar behavior is explained by a unique transition between the two quenching mechanisms which have an opposite dependence of thermal quenching on Ga content. For low Ga content, thermally activated crossover from the 4f 5d state to the 4f(2)((3)PJ) states is the operative quenching mechanism. With increasing Ga content, the activation energy for thermally activated crossover becomes larger, as derived from the configuration coordinate diagram, while from the vacuum referred binding energy diagram the activation energy of thermal ionization becomes smaller. Based on these results, we demonstrated that the thermal quenching of Pr3+ : 5d(1)-4f luminescence in Y3Al5-xGaxO12 with x = 0, 1, 2 is a thermally activated crossover while for x = 3, 4, 5 it results from the thermal ionization.
引用
收藏
页数:8
相关论文
共 33 条
[1]   Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce [J].
Bachmann, Volker ;
Ronda, Cees ;
Meijerink, Andries .
CHEMISTRY OF MATERIALS, 2009, 21 (10) :2077-2084
[2]   Configuration coordinate energy level diagrams of intervalence and metal-to-metal charge transfer states of dopant pairs in solids [J].
Barandiaran, Zoila ;
Meijerink, Andries ;
Seijo, Luis .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (30) :19874-19884
[3]   Thermoluminescence excitation spectroscopy: A versatile technique to study persistent luminescence phosphors [J].
Bos, Adrie J. J. ;
van Duijvenvoorde, Ronald M. ;
van der Kolk, Erik ;
Drozdowski, Winicjusz ;
Dorenbos, Pieter .
JOURNAL OF LUMINESCENCE, 2011, 131 (07) :1465-1471
[4]   Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter [J].
de Jong, Mathijs ;
Seijo, Luis ;
Meijerink, Andries ;
Rabouw, Freddy T. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (26) :16959-16969
[5]   The electronic level structure of lanthanide impurities in REPO4, REBO3, REAlO3, and RE2O3 (RE = La, Gd, Y, Lu, Sc) compounds [J].
Dorenbos, Pieter .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (22)
[6]   Ce3+ 5d-centroid shift and vacuum referred 4f-electron binding energies of all lanthanide impurities in 150 different compounds [J].
Dorenbos, Pieter .
JOURNAL OF LUMINESCENCE, 2013, 135 :93-104
[7]   Determining binding energies of valence-band electrons in insulators and semiconductors via lanthanide spectroscopy [J].
Dorenbos, Pieter .
PHYSICAL REVIEW B, 2013, 87 (03)
[8]   Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y, Lu) garnet compounds [J].
Dorenbos, Pieter .
JOURNAL OF LUMINESCENCE, 2013, 134 :310-318
[9]   Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping [J].
Fasoli, M. ;
Vedda, A. ;
Nikl, M. ;
Jiang, C. ;
Uberuaga, B. P. ;
Andersson, D. A. ;
McClellan, K. J. ;
Stanek, C. R. .
PHYSICAL REVIEW B, 2011, 84 (08)
[10]  
Henderson B., 2006, OPTICAL SPECTROSCOPY