Breadmaking achievement using grains alternative to wheat and rye is a challenging task for cereal technologists, since most of the available innovative breads are characterised by poor crumb and crust characteristics, slight flavour and fast staling. To improve texture, mouth-feel, acceptability and shelf-life of breads prepared by using minor and/or under-utilised cereals, gluten and/or polymeric substances that mimic the viscoelastic properties of gluten, are required. Recent studies reported that high hydrostatic pressure (HP) treatment may represent an efficient non-thermal technique to promote the dough structure formation of composite cereal matrices. In the present study the effects of HP on the techno-functional and nutritional properties of oat-, millet-, and sorghum- based breads were evaluated compared to their unpressured- and gluten-added conventionally made counterparts. HP-treated (350 MPa, 10 min) wheat, oat, millet and sorghum batters were added to the bread recipe, replacing 50%, 60% and 40% of untreated wheat flour, respectively. Data from bread analyses revealed non significant physico-chemical impairment, and superior nutritional and sensory profiles in most quality features when HP treatment was applied to dough batters, compared with conventional/gluten-added samples. Specifically. HP breads deserved better sensory scores and exhibited higher antiradical activities despite a reduction in specific volume (wheat and oat) and faster staling kinetics (millet and sorghum) that were explicit in some composite samples. (c) 2012 Elsevier Ltd. All rights reserved.