On the uniform distribution of Gauss sums and Jacobi sums

被引:0
作者
Katz, NM
Zheng, ZY
机构
来源
ANALYTIC NUMBER THEORY, VOL. 2 - PROCEEDINGS OF A CONFERENCE IN HONOR OF HEINI HALBERSTAM | 1996年 / 139卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a finite held with q elements, let Psi be a non-trivial additive character of F+, and chi, rho be the multiplicative characters of F-x. We denote by G (Psi, chi) the Gauss sums and by J (chi, rho) the Jacobi sums. In this paper, we consider the equidistribution properties of the following sequences in the interval [0, 1] as q --> infinity: {1/2 pi arg G (Psi, chi)}, Psi not equal Psi(0), chi not equal chi(0), and {1/2 pi arg J (chi, rho)}, chi not equal chi(0), rho not equal chi(0), chi(-1). We establish some equidistribution estimates with better error terms for them. Also are give moment estimates for G (Psi, chi) and J (chi, rho).
引用
收藏
页码:537 / 558
页数:22
相关论文
empty
未找到相关数据