LINEAR INVISCID DAMPING NEAR MONOTONE SHEAR FLOWS

被引:34
作者
Jia, Hao [1 ]
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词
Euler equation; linear inviscid damping; shear flows;
D O I
10.1137/19M1273232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an alternative proof of sharp decay rates and the linear inviscid damping near monotone shear flow in a periodic channel, first obtained in [D. Wei, Z. Zhang, and W. Zhao, Comm. Pure Appl. Math., 71 (2018), pp. 617-687]. We shall also obtain the precise asymptotics of the solutions, measured in the space L-infinity.
引用
收藏
页码:623 / 652
页数:30
相关论文
共 19 条
[1]  
[Anonymous], ARXIV171103668
[2]  
[Anonymous], 2018, ARXIV180804026
[3]  
[Anonymous], ARXIV170400428
[4]   INVISCID DAMPING AND THE ASYMPTOTIC STABILITY OF PLANAR SHEAR FLOWS IN THE 2D EULER EQUATIONS [J].
Bedrossian, Jacob ;
Masmoudi, Nader .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122) :195-300
[5]  
Deng Yu, 2018, ARXIV180301246
[6]  
Faddeev L. D., 1971, ZAP NAUCHN SEM LENIN, V21, P164
[7]  
Grenier E, 2018, ARXIV180408291
[8]  
Kelvin L., 1887, PHILOS MAG, V24
[9]  
Kirchhoff G, 1876, Vorlesungen ber Mathematische Physik
[10]  
Lin Z., SIAM J MATH ANAL, V35, P318