Lane-Emden problems: Asymptotic behavior of low energy nodal solutions

被引:17
作者
Grossi, Massimo [1 ]
Grumiau, Christopher [2 ]
Pacella, Filomena [1 ]
机构
[1] Univ Roma Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Mons, Inst Math, B-7000 Mons, Belgium
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2013年 / 30卷 / 01期
关键词
Superlinear elliptic boundary value problem; Least energy nodal solution; Asymptotic behavior; Variational methods; 2-DIMENSIONAL ELLIPTIC PROBLEM; SIGN-CHANGING SOLUTIONS; QUALITATIVE PROPERTIES; LARGE EXPONENT; EQUATIONS; SYMMETRY;
D O I
10.1016/j.anihpc.2012.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nodal solutions of the Lane-Emden-Dirichlet problem {-Delta u = vertical bar u vertical bar(p-1)u, in Omega u = 0, on delta Omega, where Omega is a smooth bounded domain in R-2 and p > 1. We consider solutions u(p) satisfying p integral(Omega)vertical bar del u(p)vertical bar(2) -> 16 pi e as p -> +infinity and we are interested in the shape and the asymptotic behavior as p -> +infinity. First we prove that (*) holds for least energy nodal solutions. Then we obtain some estimates and the asymptotic profile of this kind of solutions. Finally, in some cases, we prove that pu(p) can be characterized as the difference of two Green's functions and the nodal line intersects the boundary of Omega, for large p. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:121 / 140
页数:20
相关论文
共 20 条
[1]   Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains [J].
Aftalion, A ;
Pacella, F .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) :339-344
[2]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[3]  
Bartsch T., 2003, TOP METH NONLIN ANAL, V22, P1
[4]   Classification of low energy sign-changing solutions of an almost critical problem [J].
Ben Ayed, Mohamed ;
El Mehdi, Khalil ;
Pacella, Filomena .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) :347-373
[5]   Blow-up and nonexistence of sign changing solutions to the Brezis-Nirenberg problem in dimension three [J].
Ben Ayed, Mohamed ;
El Mehdi, Khalil ;
Pacella, Filomena .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (04) :567-589
[6]   Asymptotics and symmetries of least energy nodal solutions of Lane-Emden problems with slow growth [J].
Bonheure, Denis ;
Bouchez, Vincent ;
Grumiau, Christopher ;
Van Schaftingen, Jean .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (04) :609-631
[7]  
BREZIS H, 1983, COLLECTION MATH APPL
[8]   A sign-changing solution for a superlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1041-1053
[9]  
El Mehdi K, 2004, ADV NONLINEAR STUD, V4, P15
[10]   On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity [J].
Esposito, Pierpaolo ;
Musso, Monica ;
Pistoia, Angela .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :497-519