Convolutional neural network-based cow interaction watchdog

被引:14
|
作者
Ardo, Hakan [1 ]
Guzhva, Oleksiy [2 ]
Nilsson, Mikael [1 ]
Herlin, Anders H. [2 ]
机构
[1] Lund Univ, Ctr Math Sci, Solvegatan 18, Lund, Sweden
[2] Swedish Univ Agr Sci, Dept Biosyst & Technol, Box 103, S-23053 Alnarp, Sweden
基金
瑞典研究理事会;
关键词
neural nets; video recording; image sequences; video signal processing; convolutional neural network; cow interaction watchdog; animal behaviour; video sequences; automated watchdog system; user-defined criteria; video frames; BEHAVIOR;
D O I
10.1049/iet-cvi.2017.0077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of applied animal behaviour, video recordings of a scene of interest are often made and then evaluated by experts. This evaluation is based on different criteria (number of animals present, an occurrence of certain interactions, the proximity between animals and so forth) and aims to filter out video sequences that contain irrelevant information. However, such task requires a tremendous amount of time and resources, making manual approach ineffective. To reduce the amount of time the experts spend on watching the uninteresting video, this study introduces an automated watchdog system that can discard some of the recorded video material based on user-defined criteria. A pilot study on cows was made where a convolutional neural network detector was used to detect and count the number of cows in the scene as well as include distances and interactions between cows as filtering criteria. This approach removed 38% (50% for additional filter parameters) of the recordings while only losing 1% (4%) of the potentially interesting video frames.
引用
收藏
页码:171 / 177
页数:7
相关论文
共 50 条
  • [1] Convolutional Neural Network-based Virtual Screening
    Shan, Wenying
    Li, Xuanyi
    Yao, Hequan
    Lin, Kejiang
    CURRENT MEDICINAL CHEMISTRY, 2021, 28 (10) : 2033 - 2047
  • [2] Cow Individual Identification Based on Convolutional Neural Network
    Lit, Zhangyong
    Ge, Chao
    Shen, Siwan
    Li, Xinwei
    2018 INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND ARTIFICIAL INTELLIGENCE (ACAI 2018), 2018,
  • [3] A CONVOLUTIONAL NEURAL NETWORK-BASED MODEL OF NEURAL PATHWAYS IN THE RETINA
    Zamani, Yasin
    Nategh, Neda
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6906 - 6909
  • [4] Iterative Convolutional Neural Network-Based Illumination Estimation
    Koscevic, Karlo
    Subasic, Marko
    Loncaric, Sven
    IEEE ACCESS, 2021, 9 : 26755 - 26765
  • [5] Convolutional Neural Network-based UWB System Localization
    Doan Tan Anh Nguyen
    Lee, Han-Gyeol
    Joung, Jingon
    Jeong, Eui-Rim
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 488 - 490
  • [6] Convolutional Neural Network-based Image Restoration (CNNIR)
    Huang, Zheng-Jie
    Lu, Wei-Hao
    Patel, Brijesh
    Chiu, Po-Yan
    Yang, Tz-Yu
    Tong, Hao Jian
    Bucinskas, Vytautas
    Greitans, Modris
    Lin, Po Ting
    2022 18TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2022), 2022,
  • [7] Convolutional Neural Network-Based Discriminator for Outlier Detection
    Alharbi, Fahad
    El Hindi, Khalil
    Al Ahmadi, Saad
    Alsalamn, Hussien
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [8] Convolutional Neural Network-Based Image Distortion Classification
    Buczkowski, Mateusz
    Stasinski, Ryszard
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2019), 2019, : 275 - 279
  • [9] Convolutional Neural Network-Based Fish Posture Classification
    Li, Xin
    Ding, Anzi
    Mei, Shaojie
    Wu, Wenjin
    Hou, Wenguang
    COMPLEXITY, 2021, 2021 (2021)
  • [10] Convolutional neural network-based surgical instrument detection
    Cai, Tongbiao
    Zhao, Zijian
    TECHNOLOGY AND HEALTH CARE, 2020, 28 : S81 - S88