Influence of temperature and other system parameters on microbial fuel cell performance: Numerical and experimental investigation

被引:96
作者
Gadkari, Siddharth [1 ,2 ]
Fontmorin, Jean-Marie [3 ]
Yu, Eileen [3 ]
Sadhukhan, Jhuma [1 ,2 ]
机构
[1] Univ Surrey, Ctr Environm & Sustainabil, Guildford GU2 7XH, Surrey, England
[2] Univ Surrey, Dept Chem & Proc Engn, Guildford GU2 7XH, Surrey, England
[3] Newcastle Univ, Sch Engn, Newcastle Upon Tyne, Tyne & Wear, England
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Microbial fuel cell; Temperature; Mathematical model; Electrode spacing; Ionic strength; Bioelectrochemical systems; BIOELECTROCHEMICAL SYSTEMS; POWER-GENERATION; IONIC-STRENGTH; MODEL; SIMULATION;
D O I
10.1016/j.cej.2020.124176
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents a steady state, two dimensional mathematical model of microbial fuel cells (MFCs) developed by coupling mass, charge and energy balance with the bioelectrochemical reactions. The model parameters are estimated and validated using experimental results obtained from five air-cathode MFCs operated at different temperatures. Model analysis correctly predicts the nonlinear performance trend of MFCs with temperatures ranging between 20 degrees C and 40 degrees C. The two dimensional distribution allows the computation of local current density and reaction rates in the biofilm, helping to correctly capture the interdependence of system variables and predict the drop in power density at higher temperatures. Model applicability for parametric analysis and process optimization is further highlighted by studying the effect of electrode spacing and ionic strength on MFC performance.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Assessment of the Effects of Flow Rate and Ionic Strength on the Performance of an Air-Cathode Microbial Fuel Cell Using Electrochemical Impedance Spectroscopy [J].
Aaron, Doug ;
Tsouris, Costas ;
Hamilton, Choo Y. ;
Borole, Abhijeet P. .
ENERGIES, 2010, 3 (04) :592-606
[2]  
[Anonymous], THESIS
[3]   Investigation of a two-dimensional model on microbial fuel cell with different biofilm porosities and external resistances [J].
Cai, Wen-Fang ;
Geng, Jia-Feng ;
Pu, Kai-Bo ;
Ma, Qian ;
Jing, Deng-Wei ;
Wang, Yun-Hai ;
Chen, Qing-Yun ;
Liu, Hong .
CHEMICAL ENGINEERING JOURNAL, 2018, 333 :572-582
[4]   Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation [J].
Chen, Shuiliang ;
Patil, Sunil A. ;
Brown, Robert Keith ;
Schroeder, Uwe .
APPLIED ENERGY, 2019, 233 :15-28
[5]   Increasing power generation for scaling up single-chamber air cathode microbial fuel cells [J].
Cheng, Shaoan ;
Logan, Bruce E. .
BIORESOURCE TECHNOLOGY, 2011, 102 (06) :4468-4473
[6]   A single-chamber microbial fuel cell as a biosensor for wastewaters [J].
Di Lorenzo, Mirella ;
Curtis, Tom P. ;
Head, Ian M. ;
Scott, Keith .
WATER RESEARCH, 2009, 43 (13) :3145-3154
[7]   Brewery wastewater treatment using air-cathode microbial fuel cells [J].
Feng, Yujie ;
Wang, Xin ;
Logan, Bruce E. ;
Lee, He .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 78 (05) :873-880
[8]   Stainless Steel-Based Materials for Energy Generation and Storage in Bioelectrochemical Systems Applications [J].
Fontmorin, Jean-Marie ;
Hou, Junxian ;
Rasul, Shahid ;
Yu, Eileen .
SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13) :1181-1192
[9]   Two-dimensional mathematical model of an air-cathode microbial fuel cell with graphite fiber brush anode [J].
Gadkari, Siddharth ;
Gu, Sai ;
Sadhukhan, Jhuma .
JOURNAL OF POWER SOURCES, 2019, 441
[10]   Microbial fuel cells: A fast converging dynamic model for assessing system performance based on bioanode kinetics [J].
Gadkari, Siddharth ;
Shemfe, Mobolaji ;
Sadhukhan, Jhuma .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) :15377-15386