Convergence of the modified SOR-Newton method for non-smooth equations

被引:0
作者
Wang, Li [1 ]
Liu, Qingsheng [1 ]
Zhou, Xiaoxia [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Forestry Univ, Coll Sci, Nanjing 210037, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear equations; non-smooth; semismooth; MSOR-Newton method; convergence; 65F10;
D O I
10.1080/00207160.2012.758841
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by Chen [On the convergence of SOR methods for nonsmooth equations. Numer. Linear Algebra Appl. 9 (2002), pp. 81-92], in this paper, we further investigate a modified SOR-Newton (MSOR-Newton) method for solving a system of nonlinear equations F(x)=0, where F is strongly monotone and locally Lipschitz continuous but not necessarily differentiable. The convergence interval of the parameter in the MSOR-Newton method is given. Compared with that of the SOR-Newton method, this interval can be enlarged. Furthermore, when the B-differential of F(x) is difficult to compute, a simple replacement can be used, which can reduce the computational load. Numerical examples show that at the same cost of computational complexity, this MSOR-Newton method can converge faster than the corresponding SOR-Newton method by choosing a suitable parameter.
引用
收藏
页码:1535 / 1545
页数:11
相关论文
共 15 条
[1]   On the convergence of Newton's method for a class of nonsmooth operators [J].
Argyros, Ioannis K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) :584-593
[2]   On the Secant method for solving nonsmooth equations [J].
Argyros, Ioannis K. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (01) :146-157
[3]   On convergence of SOR methods for nonsmooth equations [J].
Chen, XJ .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2002, 9 (01) :81-92
[4]  
Clarke Frank H., 1983, Optimization and Nonsmooth Analysis
[5]   Non-smooth SOR for L1-Fitting: Convergence Study and Discussion of Related Issues [J].
Glowinski, R. ;
Karkkainen, T. ;
Valkonen, T. ;
Ivannikov, A. .
JOURNAL OF SCIENTIFIC COMPUTING, 2008, 37 (02) :103-138
[6]  
KIKUCHI F, 1981, THEOR APPL MECH, V29, P319
[7]   Efficient continuation Newton-like method for solving systems of non-linear equations [J].
Kou, JS ;
Li, YT ;
Wang, XH .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (02) :846-853
[8]   A generalized Jacobian based Newton method for semismooth block-triangular system of equations [J].
Smietanski, Marek J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) :305-313
[9]   On a new class parametrized Newton-like method for semismooth equations [J].
Smietanski, Marek J. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (02) :430-437
[10]  
Ortega J.M., 2000, CLASSICS APPL MATH, V30