APPLICATION OF A NUMERICAL RENORMALIZATION GROUP PROCEDURE TO AN ELEMENTARY ANHARMONIC OSCILLATOR

被引:1
作者
Wojcik, K. P. [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
来源
ACTA PHYSICA POLONICA B | 2013年 / 44卷 / 01期
关键词
MODEL;
D O I
10.5506/APhysPolB.44.69
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The canonical quantum Hamiltonian eigenvalue problem for an anharmonic oscillator with a Lagrangian L = phi(2)/2 - m(2)phi(2)/2 - gm(3)phi(4) is numerically solved in two ways. One of the ways uses a plain cutoff on the number of basis states and the other employs a renormalization group procedure. The latter yields superior results to the former because it allows one to calculate the effective Hamiltonians. Matrices of effective Hamiltonians are quite small in comparison to the initial cutoff but nevertheless yield accurate eigenvalues thanks to the fact that just eight of their highest-energy matrix elements are proper functions of the small effective cutoff. We explain how these cutoff-dependent matrix elements emerge from the structure of the Hamiltonian and the renormalization group recursion, and we show that such small number of cutoff-dependent terms is sufficient to renormalize any band-diagonal Hamiltonian. DOI:10.5506/APhysPolB.44.69
引用
收藏
页码:69 / 79
页数:11
相关论文
共 19 条
  • [1] Anderson orthogonality and the numerical renormalization group
    Weichselbaum, Andreas
    Muender, Wolfgang
    von Delft, Jan
    PHYSICAL REVIEW B, 2011, 84 (07):
  • [2] Renormalization group procedure for effective particles: Elementary example of an exact solution with finite mass corrections and no involvement of vacuum
    Glazek, Stanislaw D.
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [3] Numerical Renormalization Group at Marginal Spectral Density: Application to Tunneling in Luttinger Liquids
    Freyn, Axel
    Florens, Serge
    PHYSICAL REVIEW LETTERS, 2011, 107 (01)
  • [4] Renormalization group procedure for potential -g/r2
    Dawid, S. M.
    Gonsior, R.
    Kwapisz, J.
    Serafin, K.
    Tobolski, M.
    Glazek, S. D.
    PHYSICS LETTERS B, 2018, 777 : 260 - 264
  • [5] Adaptive broadening to improve spectral resolution in the numerical renormalization group
    Lee, Seung-Sup B.
    Weichselbaum, Andreas
    PHYSICAL REVIEW B, 2016, 94 (23)
  • [6] Irregular parameter dependence of numerical results in tensor renormalization group analysis
    Kadoh, Daisuke
    Kuramashi, Yoshinobu
    Ueno, Ryoichiro
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2019, 2019 (06):
  • [7] Application of the renormalization group approach for permeability estimation in digital rocks
    Wei, Shuaishuai
    Shen, Jinsong
    Yang, Wuyang
    Li, Zhenling
    Di, Shuhua
    Ma, Chao
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 179 : 631 - 644
  • [8] Restoring the continuum limit in the time-dependent numerical renormalization group approach
    Boeker, Jan
    Anders, Frithjof B.
    PHYSICAL REVIEW B, 2020, 102 (07)
  • [9] Decoherence in a double-dot Aharonov-Bohm interferometer: Numerical renormalization group study
    Kubala, Bjoern
    Roosen, David
    Sindel, Michael
    Hofstetter, Walter
    Marquardt, Florian
    PHYSICAL REVIEW B, 2014, 90 (03)
  • [10] Application of renormalization group corrected coupling parameter expansion method to square well fluids
    Ramana, A. Sai Venkata
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 442 : 137 - 148