B4C Composites with a TiB2-C Core-Shell Microstructure Produced by Self-Propagating High-Temperature Synthesis-Assisted Spark Plasma Sintering

被引:7
|
作者
Sahin, Filiz Cinar [1 ]
Mansoor, Mubashir [1 ,2 ]
Cengiz, Meral [1 ]
Apak, Burcu [1 ]
Yanmaz, Leyla [1 ]
Balazsi, Katalin [3 ]
Fogarassy, Zsolt [3 ]
Derin, Bora [1 ]
Goller, Gultekin [1 ]
Yucel, Onuralp [1 ]
机构
[1] Istanbul Tech Univ, Met & Mat Engn Dept, TR-34469 Istanbul, Turkey
[2] Istanbul Tech Univ, Dept Appl Phys, TR-34469 Istanbul, Turkey
[3] Hungarian Acad Sci, Inst Tech Phys & Mat Sci, Ctr Energy Res, H-1051 Budapest, Hungary
关键词
TITANIUM DIBORIDE COMPOSITES; MECHANICAL-PROPERTIES; BORON-CARBIDE; B4C-TIB2; COMPOSITE; DENSIFICATION; PRESSURE; FIELD; SHS; CONSOLIDATION; CERAMICS;
D O I
10.1021/acs.jpcc.2c06179
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Square-shaped boron carbide ceramic composites have been produced by spark plasma sintering with the addition of 5 to 20 vol % titanium metal powder in the B4C matrix in order to initiate an in situ self-propagating high-temperature synthesis (SHS) of TiB2. The SHS reaction not only enhances many of the physical and mechanical properties of B4C, but also reduces the required sintering temperature and pressure because of the enthalpy of reaction between metallic Ti and B4C. Sintering has been carried out in the SPS-temperature range of 1450 to 1550 degrees C with a uniaxial pressure of 40 MPa and a dwell time of 4 min under a 1 atm argon atmosphere. The effects of various amounts of Ti additions and sintering temperature on the phase composition, density, hardness, fracture toughness, and microstructure are examined. X-ray diffraction and transmission electron microscopy evaluations have shown that added Ti completely transforms into TiB2, resulting in a core-shell microstructure with a carbon core, surrounded by a TiB2 shell in the B4C matrix. Moreover, by carrying out a control experiment where TiB2 was added instead of Ti, and performing a molecular dynamics simulation of the B4C-Ti interface, the significance of the in situ SHS process has been validated.
引用
收藏
页码:20114 / 20126
页数:13
相关论文
共 50 条
  • [1] Production of B4C-TiB2 composite powder by self-propagating high-temperature synthesis
    Coban, Ozan
    Bugdayci, Mehmet
    Acma, M. Ercan
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2022, 58 (03) : 777 - 791
  • [2] Self-Propagating High-Temperature Synthesis Pressing of Composites Based on the TiB2-B4C-Al System
    Bogatov, Yu, V
    Shcherbakov, V. A.
    Sychev, A. E.
    INORGANIC MATERIALS, 2022, 58 (05) : 525 - 530
  • [3] In situ synthesis and sintering of B4C/ZrB2 composites from B4C and ZrH2 mixtures by spark plasma sintering
    Rehman, Sahibzada Shakir
    Ji, Wei
    Fu, Zhengyi
    Wang, Weimin
    Wang, Hao
    Asif, Muhammad
    Zhang, Jinyong
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (04) : 1139 - 1145
  • [4] Production of B4C-TiB2 composite powder by self-propagating high-temperature synthesis
    Ozan Coban
    Mehmet Bugdayci
    M. Ercan Acma
    Journal of the Australian Ceramic Society, 2022, 58 : 777 - 791
  • [5] TiB2-reinforced B4C composites produced by reaction sintering at high-pressure and high temperature
    Wang, Xiaonan
    Tao, Qiang
    Han, Yang
    Hu, Qiuyang
    Cheng, Jiaen
    Jia, Hongsheng
    Zhu, Pinwen
    HIGH PRESSURE RESEARCH, 2020, 40 (02) : 245 - 256
  • [6] AlMgB14-TiB2 composite materials obtained by self-propagating high-temperature synthesis and spark plasma sintering
    Nikitin, P. Yu
    Zhukov, I. A.
    Matveev, A. E.
    Sokolov, S. D.
    Boldin, M. S.
    Vorozhtsov, A. B.
    CERAMICS INTERNATIONAL, 2020, 46 (14) : 22733 - 22737
  • [7] Synthesis of Ceramic and Composite Materials Using a Combination of Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering (Review)
    Vidyuk, T. M.
    Korchagin, M. A.
    Dudina, D. V.
    Bokhonov, B. B.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2021, 57 (04) : 385 - 397
  • [8] Self-Propagating High-Temperature Synthesis of ZrB2-B4C Composites with the Hollow-Shell Dispersed Phase
    Shcherbakov, V. A.
    Gryadunov, A. N.
    Alymov, M. I.
    DOKLADY PHYSICAL CHEMISTRY, 2019, 485 (1) : 47 - 49
  • [9] Synthesis of Ti-B-C composites by reactive spark plasma sintering of B4C and Ti
    Sugiyama, S
    Asari, K
    Taimatsu, H
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2000, 108 (08) : 747 - 752
  • [10] A dense and tough (B4C-TiB2)-B4C 'composite within a composite' produced by spark plasma sintering
    Bogomol, I.
    Borodianska, H.
    Zhao, T.
    Nishimura, T.
    Sakka, Y.
    Loboda, P.
    Vasylkiv, O.
    SCRIPTA MATERIALIA, 2014, 71 : 17 - 20