Asymptotics of eigenstates of elliptic problems with mixed boundary data on domains tending to infinity

被引:15
作者
Chipot, Michel [1 ]
Roy, Prosenjit [1 ]
Shafrir, Itai [2 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
瑞士国家科学基金会;
关键词
eigenvalue problem; l goes to plus infinity; dimension reduction; CYLINDRICAL DOMAINS; PARABOLIC PROBLEMS; BEHAVIOR;
D O I
10.3233/ASY-131182
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the asymptotic behavior of eigenvalues and eigenfunctions of an elliptic operator with mixed boundary conditions on cylindrical domains when the length of the cylinder goes to infinity. We identify the correct limiting problem and show in particular, that in general the limiting behavior is very different from the one for the Dirichlet boundary conditions.
引用
收藏
页码:199 / 227
页数:29
相关论文
共 18 条
[1]   A VARIATIONAL DEFINITION OF THE STRAIN-ENERGY FOR AN ELASTIC STRING [J].
ACERBI, E ;
BUTTAZZO, G ;
PERCIVALE, D .
JOURNAL OF ELASTICITY, 1991, 25 (02) :137-148
[2]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[3]  
Braides A., 2002, Gamma-Convergence for Beginners
[4]   On the asymptotic behaviour of the solution of elliptic problems [J].
Chipot, M ;
Rougirel, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (06) :435-440
[5]  
Chipot M, 2001, DISCRETE CONT DYN-B, V1, P319
[6]   On the asymptotic behaviour of the solution of elliptic problems in cylindrical domains becoming unbounded [J].
Chipot, M ;
Rougirel, A .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2002, 4 (01) :15-44
[7]  
Chipot M, 2001, NONLINEAR ANAL-THEOR, V47, P3
[8]  
Chipot M., 2002, L GOES PLUS INFINITY
[9]  
Chipot M., 2001, ELLIPTIC PARABOLIC P, P52
[10]  
Chipot M., 2004, GAKUTO INT SER MATH, V20, P16