ON BARRIERS IN STATE AND INPUT CONSTRAINED NONLINEAR SYSTEMS

被引:18
作者
De Dona, Jose A. [1 ]
Levine, Jean [2 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
[2] Mines ParisTech, CAS, Math & Syst, F-77300 Fontainebleau, France
关键词
state and input constraints; barrier; admissible set; nonlinear systems;
D O I
10.1137/130908786
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the problem of state and input constrained control is addressed with multidimensional constraints. We obtain a local description of the boundary of the admissible subset of the state space where the state and input constraints can be satisfied for all times. This boundary is made of two disjoint parts: the subset of the state constraint boundary on which there are trajectories pointing toward the interior of the admissible set or tangentially to it, and a barrier, namely, a semipermeable surface which is constructed via a minimum-like principle.
引用
收藏
页码:3208 / 3234
页数:27
相关论文
共 26 条
  • [1] [Anonymous], OPTIMAL CONTROL
  • [2] [Anonymous], 1967, Foundations of Optimal Control Theory
  • [3] Aubin J. P., 1991, VIABILITY THEORY SYS
  • [4] Blanchini F, 2008, SYST CONTROL-FOUND A, P1
  • [5] Castaing C., 1977, CONVEX ANAL MEASURAB, V580, DOI DOI 10.1007/BFB0087686
  • [6] CESARI L., 1983, Appl. Math. (New York)., V17
  • [7] Clarke F.H, 1983, OPTIMIZATION NONSMOO
  • [8] Toward a theory of process synthesis
    Feinberg, M
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (16) : 3751 - 3761
  • [9] Filippov A.L., 1962, J. Soc. Ind. Appl. Math. A: Control, V1, P76, DOI DOI 10.1137/0301006
  • [10] Discovery of the maximum principle
    Gamkrelidze R.V.
    [J]. Journal of Dynamical and Control Systems, 1999, 5 (4) : 437 - 451