Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses

被引:23
作者
Bachar, Ahmed [1 ]
Mercier, Cyrille [1 ]
Tricoteaux, Arnaud [1 ]
Hampshire, Stuart [2 ]
Leriche, Anne [1 ]
Follet, Claudine [1 ]
机构
[1] Univ Valenciennes & Hainaut Cambresis, Lab Mat Cerarn & Proc Associes, Valenciennes, France
[2] Univ Limerick, Mat & Surface Sci Inst, Limerick, Ireland
关键词
Bioactive glass; Oxynitride glass; Oxyfluoronitride glass; Mechanical properties; Glass structure; Si-29 MAS NMR; Bioactivity; O-N GLASSES; APATITE FORMATION; NMR; SUBSTITUTION; SI-29;
D O I
10.1016/j.jmbbm.2013.03.010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using Si-29 MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations similar to those in human blood plasma. Formation of a bioactive apatite layer on the samples treated in SBF was confirmed by grazing incidence X-ray diffraction and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDS). The crystallinity of this layer decreases with increasing N content suggesting that N may decrease bioactivity slightly. (c) 2013 Published by Elsevier Ltd.
引用
收藏
页码:133 / 148
页数:16
相关论文
共 52 条
  • [1] Fluoride: A toxic or therapeutic agent in the treatment of osteoporosis?
    Aaseth, J
    Shimshi, M
    Gabrilove, JL
    Birketvedt, GS
    [J]. JOURNAL OF TRACE ELEMENTS IN EXPERIMENTAL MEDICINE, 2004, 17 (02) : 83 - 92
  • [2] MECHANICAL-PROPERTIES OF SINTERED HYDROXYAPATITE FOR PROSTHETIC APPLICATIONS
    AKAO, M
    AOKI, H
    KATO, K
    [J]. JOURNAL OF MATERIALS SCIENCE, 1981, 16 (03) : 809 - 812
  • [3] The influence of CaF2 content on the physical properties and apatite formation of bioactive glass coatings for dental implants
    Al-Noaman, Ahmed
    Rawlinson, Simon C. F.
    Hill, Robert G.
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (15) : 1850 - 1858
  • [4] AN NMR-STUDY OF SILICON COORDINATION IN Y-SI-AL-O-N GLASSES
    AUJLA, RS
    LENGWARD, G
    LEWIS, MH
    SEYMOUR, EFW
    STYLES, GA
    WEST, GW
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1986, 54 (02): : L51 - L56
  • [5] Effects of addition of nitrogen on bioglass properties and structure
    Bachar, Ahmed
    Mercier, Cyrille
    Tricoteaux, Arnaud
    Leriche, Anne
    Follet, Claudine
    Saadi, Mohamed
    Hampshire, Stuart
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (03) : 693 - 701
  • [6] An Overview of the Structure and Properties of Silicon-Based Oxynitride Glasses
    Becher, Paul F.
    Hampshire, Stuart
    Pomeroy, Michael J.
    Hoffmann, Michael J.
    Lance, Michael J.
    Satet, Raphaelle L.
    [J]. INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2011, 2 (01) : 63 - 83
  • [7] Structure of fluoride-containing bioactive glasses
    Brauer, Delia S.
    Karpukhina, Natalia
    Law, Robert V.
    Hill, Robert G.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (31) : 5629 - 5636
  • [8] Chicot Didier, 2010, Ceramic Materials, P115
  • [9] Vickers Indentation Fracture (VIF) modeling to analyze multi-cracking toughness of titania, alumina and zirconia plasma sprayed coatings
    Chicot, D.
    Duarte, G.
    Tricoteaux, A.
    Jorgowski, B.
    Leriche, A.
    Lesage, J.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 527 (1-2): : 65 - 76
  • [10] The indentation fracture toughness (KC) and its parameters:: the case of silica-rich glasses
    Dériano, S
    Jarry, A
    Rouxel, T
    Sangleboeuf, JC
    Hampshire, S
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 344 (1-2) : 44 - 50