Contributions of matric and osmotic potentials to the unfrozen water content of frozen soils

被引:49
作者
Drotz, Stina Harrysson [1 ]
Tilston, Emma L. [1 ]
Sparrman, Tobias [2 ]
Schleucher, Jurgen [3 ]
Nilsson, Mats [1 ]
Oquist, Mats G. [1 ]
机构
[1] Swedish Univ Agr Sci SLU, Dept Forest Ecol & Management, S-90183 Umea, Sweden
[2] Umea Univ, Dept Chem, S-90187 Umea, Sweden
[3] Umea Univ, Dept Med Biochem & Biophys, S-90187 Umea, Sweden
基金
瑞典研究理事会;
关键词
Frozen soils; H-2; NMR; Matric potential; Osmotic potential; Unfrozen water; Water potential; FOREST SOIL; TEMPERATURE; RESPIRATION; DEPENDENCE; EMISSIONS; CLIMATE; FROST;
D O I
10.1016/j.geoderma.2008.11.007
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Recent reports show that biogeochemical processes continue when the soil is frozen, but are limited by water availability. However, there is little knowledge about the interactive effects of soil and environmental variables on amounts of unfrozen water in frozen soils. The aims of this study were to determine the contributions of matric and osmotic potentials to the unfrozen water content of frozen soil. We determined the effects of matric and osmotic potential on unfrozen water contents of frozen mineral soil fractions (ranging from coarse sand to fine silt) at -7 degrees C, and estimated the contributions of these potentials to liquid water contents in samples from organic surface layers of boreal soils frozen at -4 degrees C. In the mineral soil fractions the unfrozen water contents appeared to be governed solely by the osmotic potential, but in the humus layers of the sampled boreal soils both the osmotic and matric potentials control unfrozen water content, with osmotic potential contributing 20 to 69% of the total water potential. We also determined pore size equivalents, where unfrozen water resides at -4 degrees C, and found a strong correlation between these equivalents and microbial CO2 production. The larger the pores in which the unfrozen water is found the larger the microbial activity that can be sustained. The osmotic potential may therefore be a key determinant of unfrozen water and carbon dynamics in frozen soil. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:392 / 398
页数:7
相关论文
共 47 条
  • [1] Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands
    Alm, J
    Saarnio, S
    Nykänen, H
    Silvola, J
    Martikainen, PJ
    [J]. BIOGEOCHEMISTRY, 1999, 44 (02) : 163 - 186
  • [2] Anderson D. M., 1972, Highway Research Record, P12
  • [3] Andersson S., 1972, Grundforbattring, V2-3, P53
  • [4] Arenson LU, 2006, CAN GEOTECH J, V43, P325, DOI [10.1139/t06-006, 10.1139/T06-006]
  • [5] ATKINS PW, 1990, PHYSICAL CHEM, P169
  • [6] THE RELATIONSHIP BETWEEN CELL-SIZE AND VIABILITY OF SOIL BACTERIA
    BAKKEN, LR
    OLSEN, RA
    [J]. MICROBIAL ECOLOGY, 1987, 13 (02) : 103 - 114
  • [7] BAVETTA L A, 1972, P1
  • [8] Litter quality in a north European transect versus carbon storage potential
    Berg, B
    Meentemeyer, V
    [J]. PLANT AND SOIL, 2002, 242 (01) : 83 - 92
  • [9] CAMBELL GS, 1998, METHODS SOIL ANAL 1, P1188
  • [10] CHRISTENSEN H, 1995, MICROBIAL ECOL, V29, P49, DOI 10.1007/BF00217422