Representation of solution of the Dirichlet problem for the Laplace equation in the form of a generalized convolution

被引:4
作者
Kal'menov, Tynysbek Sh. [1 ]
Arepova, Gaukhar D. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] AI Farabi Kazakh Natl Univ, Alma Ata, Kazakhstan
关键词
Laplace's equation; Helmholtz's equation; Dirichlet's problem; fundamental solutions; nonlocal boundary conditions; generalized convolution; BOUNDARY-VALUE PROBLEM; DIFFERENTIAL-EQUATIONS; SPECTRAL PROBLEMS; CAUCHY-PROBLEM; CRITERION;
D O I
10.1080/17476933.2018.1533003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an integral representation of the solution of the Dirichlet problem for the Laplace and Helmholtz equations in the form of a generalized convolution.
引用
收藏
页码:816 / 824
页数:9
相关论文
共 50 条
  • [1] Solution of the dirichlet problem for laplace equation on domains with analytic boundaries
    Belov, S
    Fujii, N
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, 1998, : 73 - 79
  • [2] Asymptotics of the Solution of the Dirichlet Problem for the Laplace Equation in a Strip with Thin Branches
    Budylin, A. M.
    Levin, S. B.
    Yurova, T. S.
    MATHEMATICAL NOTES, 2024, 116 (3-4) : 432 - 445
  • [3] Convolution Equation: Solution and Probabilistic Representation
    Da Silva, Jose L.
    Erraoui, Mohamed
    Ouerdiane, Habib
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, 2010, 25 : 230 - +
  • [4] Approximation on the hexagonal grid of the Dirichlet problem for Laplace's equation
    Dosiyev, Adiguzel A.
    Celiker, Emine
    BOUNDARY VALUE PROBLEMS, 2014,
  • [5] Approximation on the hexagonal grid of the Dirichlet problem for Laplace’s equation
    Adiguzel A. Dosiyev
    Emine Celiker
    Boundary Value Problems, 2014
  • [6] On a method for constructing the Green function of the Dirichlet problem for the Laplace equation
    Kalmenov, T. Sh.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2024, 114 (02): : 105 - 113
  • [7] The Problem of Solution Restoration by Measurements for the Laplace Equation
    Tarkhov, Dmitry A.
    Migovan, Maksim A.
    Ivanenko, Kirill A.
    Smirnov, Sergey A.
    Kobicheva, Aleksandra M.
    DIGITAL SCIENCE, 2019, 850 : 450 - 455
  • [8] Asymptotic expansion of the Dirichlet problem with Laplace equation outside a thin disk
    Ershov, A. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (02): : 92 - 107
  • [9] Radially Symmetric Positive Solutions of the Dirichlet Problem for the p-Laplace Equation
    Yang, Bo
    MATHEMATICS, 2024, 12 (15)
  • [10] A fourth-order accurate difference Dirichlet problem for the approximate solution of Laplace's equation with integral boundary condition
    Dosiyev, Adiguzel
    Reis, Rifat
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)