Application of machine learning methods for predicting new superhard materials

被引:66
作者
Mazhnik, Efim [1 ]
Oganov, Artem R. [1 ,2 ,3 ]
机构
[1] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, 3 Nobel St, Moscow 121205, Russia
[2] Moscow Inst Phys & Technol, 9 Inst Sky Lane, Dolgoprudnyi 141700, Russia
[3] Northwestern Polytech Univ, Int Ctr Mat Discovery, Xian 710072, Peoples R China
基金
俄罗斯科学基金会;
关键词
LANTHANUM;
D O I
10.1063/5.0012055
中图分类号
O59 [应用物理学];
学科分类号
摘要
Superhard materials are of great interest in various practical applications, and an increasing number of research efforts are focused on their development. In this article, we demonstrate that machine learning can be successfully applied to searching for such materials. We construct a machine learning model using neural networks on graphs together with a recently developed physical model of hardness and fracture toughness. The model is trained using available elastic data from the Materials Project database and has good accuracy for predictions. We use this model to screen all crystal structures in the database and systematize all the promising hard or superhard materials, and find that diamond (and its polytypes) are the hardest materials in the database. Our results can be further used for the investigation of interesting materials using more accurate ab initio calculations and/or experiments.
引用
收藏
页数:14
相关论文
共 44 条
[1]   Coevolutionary search for optimal materials in the space of all possible compounds (vol 6, pg 105, 2020) [J].
Allahyari, Zahed ;
Oganov, Artem R. .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[2]  
[Anonymous], 2011, PHYS REV B
[3]  
[Anonymous], 2003, PHYS REV LETT
[4]   Predicting superhard materials via a machine learning informed evolutionary structure search [J].
Avery, Patrick ;
Wang, Xiaoyu ;
Oses, Corey ;
Gossett, Eric ;
Proserpio, Davide M. ;
Toher, Cormac ;
Curtarolo, Stefano ;
Zurek, Eva .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[5]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[6]   Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible [J].
Brazhkin, Vadim V. ;
Solozhenko, Vladimir L. .
JOURNAL OF APPLIED PHYSICS, 2019, 125 (13)
[7]   Modeling hardness of polycrystalline materials and bulk metallic glasses [J].
Chen, Xing-Qiu ;
Niu, Haiyang ;
Li, Dianzhong ;
Li, Yiyi .
INTERMETALLICS, 2011, 19 (09) :1275-1281
[8]   A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds [J].
de Jong, Maarten ;
Chen, Wei ;
Notestine, Randy ;
Persson, Kristin ;
Ceder, Gerbrand ;
Jain, Anubhav ;
Asta, Mark ;
Gamst, Anthony .
SCIENTIFIC REPORTS, 2016, 6
[9]  
Dong X, 2017, NAT CHEM, V9, P440, DOI [10.1038/nchem.2716, 10.1038/NCHEM.2716]
[10]   Superconductivity at 250 K in lanthanum hydride under high pressures [J].
Drozdov, A. P. ;
Kong, P. P. ;
Minkov, V. S. ;
Besedin, S. P. ;
Kuzovnikov, M. A. ;
Mozaffari, S. ;
Balicas, L. ;
Balakirev, F. F. ;
Graf, D. E. ;
Prakapenka, V. B. ;
Greenberg, E. ;
Knyazev, D. A. ;
Tkacz, M. ;
Eremets, M. I. .
NATURE, 2019, 569 (7757) :528-+