Structure of the Arginine Methyltransferase PRMT5-MEP50 Reveals a Mechanism for Substrate Specificity

被引:109
作者
Ho, Meng-Chiao [1 ,3 ]
Wilczek, Carola [1 ]
Bonanno, Jeffrey B. [1 ]
Xing, Li [6 ]
Seznec, Janina [4 ]
Matsui, Tsutomu [5 ]
Carter, Lester G. [5 ]
Onikubo, Takashi [1 ]
Kumar, P. Rajesh [1 ]
Chan, Man K. [1 ]
Brenowitz, Michael [1 ]
Cheng, R. Holland [6 ]
Reimer, Ulf [4 ]
Almo, Steven C. [1 ,2 ]
Shechter, David [1 ]
机构
[1] Yeshiva Univ, Albert Einstein Coll Med, Dept Biochem, Bronx, NY USA
[2] Yeshiva Univ, Albert Einstein Coll Med, Dept Physiol & Biophys, Bronx, NY USA
[3] Acad Sinica, Inst Biol Chem, Taipei, Taiwan
[4] JPT Peptide Technol, Berlin, Germany
[5] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA USA
[6] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA
来源
PLOS ONE | 2013年 / 8卷 / 02期
基金
美国国家卫生研究院;
关键词
WD-REPEAT; SYMMETRIC DIMETHYLATION; CRYSTAL-STRUCTURE; DATA-ACQUISITION; HISTONE-BINDING; PRMT5; METHYLATION; NUCLEOPLASMIN; PROTEINS; SYSTEM;
D O I
10.1371/journal.pone.0057008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The arginine methyltransferase PRMT5-MEP50 is required for embryogenesis and is misregulated in many cancers. PRMT5 targets a wide variety of substrates, including histone proteins involved in specifying an epigenetic code. However, the mechanism by which PRMT5 utilizes MEP50 to discriminate substrates and to specifically methylate target arginines is unclear. To test a model in which MEP50 is critical for substrate recognition and orientation, we determined the crystal structure of Xenopus laevis PRMT5-MEP50 complexed with S-adenosylhomocysteine (SAH). PRMT5-MEP50 forms an unusual tetramer of heterodimers with substantial surface negative charge. MEP50 is required for PRMT5-catalyzed histone H2A and H4 methyltransferase activity and binds substrates independently. The PRMT5 catalytic site is oriented towards the cross-dimer paired MEP50. Histone peptide arrays and solution assays demonstrate that PRMT5-MEP50 activity is inhibited by substrate phosphorylation and enhanced by substrate acetylation. Electron microscopy and reconstruction showed substrate centered on MEP50. These data support a mechanism in which MEP50 binds substrate and stimulates PRMT5 activity modulated by substrate post-translational modifications.
引用
收藏
页数:16
相关论文
共 72 条
  • [1] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [2] Nuclear Cyclin D1/CDK4 Kinase Regulates CUL4 Expression and Triggers Neoplastic Growth via Activation of the PRMT5 Methyltransferase
    Aggarwal, Priya
    Vaites, Laura Pontano
    Kim, Jong Kyong
    Mellert, Hestia
    Gurung, Buddha
    Nakagawa, Hiroshi
    Herlyn, Meenhard
    Hua, Xianxin
    Rustgi, Anil K.
    McMahon, Steven B.
    Diehl, J. Alan
    [J]. CANCER CELL, 2010, 18 (04) : 329 - 340
  • [3] Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells
    Ancelin, Katia
    Lange, Ulrike C.
    Hajkova, Petra
    Schneider, Robert
    Bannister, Andrew J.
    Kouzarides, Tony
    Surani, M. Azim
    [J]. NATURE CELL BIOLOGY, 2006, 8 (06) : 623 - 630
  • [4] Crystal structure of the human PRMT5:MEP50 complex
    Antonysamy, Stephen
    Bonday, Zahid
    Campbell, Robert M.
    Doyle, Brandon
    Druzina, Zhanna
    Gheyi, Tarun
    Han, Bomie
    Jungheim, Louis N.
    Qian, Yuewei
    Rauch, Charles
    Russell, Marijane
    Sauder, J. Michael
    Wasserman, Stephen R.
    Weichert, Kenneth
    Willard, Francis S.
    Zhang, Aiping
    Emtage, Spencer
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (44) : 17960 - 17965
  • [5] Analysis of the stability and function of nucleoplasmin through cysteine mutants
    Arnan, C
    Prieto, U
    Chiva, M
    Salvany, L
    Ausió, J
    Subirana, JA
    Saperas, N
    [J]. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2005, 437 (02) : 205 - 214
  • [6] ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids
    Ashkenazy, Haim
    Erez, Elana
    Martz, Eric
    Pupko, Tal
    Ben-Tal, Nir
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : W529 - W533
  • [7] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [8] Electrostatics of nanosystems: Application to microtubules and the ribosome
    Baker, NA
    Sept, D
    Joseph, S
    Holst, MJ
    McCammon, JA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) : 10037 - 10041
  • [9] The enhancement of histone H4 and H2A serine 1 phosphorylation during mitosis and S-phase is evolutionarily conserved
    Barber, CM
    Turner, FB
    Wang, YM
    Hagstrom, K
    Taverna, SD
    Mollah, S
    Ueberheide, B
    Meyer, BJ
    Hunt, DF
    Cheung, P
    Allis, CD
    [J]. CHROMOSOMA, 2004, 112 (07) : 360 - 371
  • [10] Arginine methylation at a glance
    Bedford, Mark T.
    [J]. JOURNAL OF CELL SCIENCE, 2007, 120 (24) : 4243 - 4246