Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces

被引:60
作者
Gogatishvili, Amiran [1 ]
Koskela, Pekka [2 ]
Zhou, Yuan [2 ,3 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
[3] Beijing Univ Aeronaut & Astronaut, Dept Math, Beijing 100083, Peoples R China
基金
芬兰科学院;
关键词
Besov space; Triebel-Lizorkin space; Hajlasz-Besov space; Hajlasz-Triebel-Lizorkin space; metric measure space; sharp maximal function; SOBOLEV SPACES; MAXIMAL FUNCTIONS; INEQUALITY; EXTENSION;
D O I
10.1515/FORM.2011.135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On a metric measure space satisfying the doubling property, we establish several optimal characterizations of Besov and Triebel-Lizorkin spaces, including a pointwise characterization. Moreover, we discuss their (non) triviality under a Poincare inequality.
引用
收藏
页码:787 / 819
页数:33
相关论文
共 28 条
  • [11] Hajlasz P, 1996, POTENTIAL ANAL, V5, P403
  • [12] A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Caratheodory Spaces
    Han, Yongsheng
    Mueller, Detlef
    Yang, Dachun
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2008,
  • [13] Sobolev-type spaces from generalized Poincare inequalities
    Heikkinen, Tom
    Koskela, Pekka
    Tuominen, Hem
    [J]. STUDIA MATHEMATICA, 2007, 181 (01) : 1 - 16
  • [14] Quasiconformal maps in metric spaces with controlled geometry
    Heinonen, J
    Koskela, P
    [J]. ACTA MATHEMATICA, 1998, 181 (01) : 1 - 61
  • [15] Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8
  • [16] The Poincare inequality is an open ended condition
    Keith, Stephen
    Zhong, Xiao
    [J]. ANNALS OF MATHEMATICS, 2008, 167 (02) : 575 - 599
  • [17] Koskela P, 1998, STUD MATH, V131, P1
  • [18] Koskela P, 2008, MATH RES LETT, V15, P727
  • [19] Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings
    Koskela, Pekka
    Yang, Dachun
    Zhou, Yuan
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (04) : 3579 - 3621
  • [20] A characterization of Hajlasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-Paley functions
    Koskela, Pekka
    Yang, Dachun
    Zhou, Yuan
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (08) : 2637 - 2661