Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces

被引:60
作者
Gogatishvili, Amiran [1 ]
Koskela, Pekka [2 ]
Zhou, Yuan [2 ,3 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
[3] Beijing Univ Aeronaut & Astronaut, Dept Math, Beijing 100083, Peoples R China
基金
芬兰科学院;
关键词
Besov space; Triebel-Lizorkin space; Hajlasz-Besov space; Hajlasz-Triebel-Lizorkin space; metric measure space; sharp maximal function; SOBOLEV SPACES; MAXIMAL FUNCTIONS; INEQUALITY; EXTENSION;
D O I
10.1515/FORM.2011.135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On a metric measure space satisfying the doubling property, we establish several optimal characterizations of Besov and Triebel-Lizorkin spaces, including a pointwise characterization. Moreover, we discuss their (non) triviality under a Poincare inequality.
引用
收藏
页码:787 / 819
页数:33
相关论文
共 28 条