Base resolution methylome profiling: considerations in platform selection, data preprocessing and analysis

被引:70
作者
Sun, Zhifu [1 ]
Cunningham, Julie [2 ]
Slager, Susan [1 ]
Kocher, Jean-Pierre [1 ]
机构
[1] Mayo Clin, Div Biomed Stat & Informat, Rochester, MN 55905 USA
[2] Mayo Clin, Med Genome Facil, Rochester, MN 55905 USA
关键词
bisulfite sequencing; differential methylation; DNA methylation; methylation 450K array; normalization; reduced representation bisulfite sequencing; study design; DNA METHYLATION ARRAY; HIGH-THROUGHPUT; R PACKAGE; QUANTILE NORMALIZATION; SYSTEMATIC ASSESSMENT; SUBSET-QUANTILE; GENOME; PIPELINE; CANCER; ACCURATE;
D O I
10.2217/epi.15.21
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Bisulfite treatment-based methylation microarray (mainly Illumina 450K Infinium array) and next-generation sequencing (reduced representation bisulfite sequencing, Agilent SureSelect Human Methyl-Seq, NimbleGen SeqCap Epi CpGiant or whole-genome bisulfite sequencing) are commonly used for base resolution DNA methylome research. Although multiple tools and methods have been developed and used for the data preprocessing and analysis, confusions remains for these platforms including how and whether the 450k array should be normalized; which platform should be used to better fit researchers' needs; and which statistical models would be more appropriate for differential methylation analysis. This review presents the commonly used platforms and compares the pros and cons of each in methylome profiling. We then discuss approaches to study design, data normalization, bias correction and model selection for differentially methylated individual CpGs and regions.
引用
收藏
页码:813 / 828
页数:16
相关论文
共 84 条
  • [1] Aberg KA, 2012, EPIGENOMICS-UK, V4, P605, DOI [10.2217/EPI.12.59, 10.2217/epi.12.59]
  • [2] Akalin A, 2012, GENOME BIOL, V13, DOI [10.1186/gb-2012-13-10-R87, 10.1186/gb-2012-13-10-r87]
  • [3] [Anonymous], R PACKAGE VERSION 2
  • [4] Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays
    Aryee, Martin J.
    Jaffe, Andrew E.
    Corrada-Bravo, Hector
    Ladd-Acosta, Christine
    Feinberg, Andrew P.
    Hansen, Kasper D.
    Irizarry, Rafael A.
    [J]. BIOINFORMATICS, 2014, 30 (10) : 1363 - 1369
  • [5] Novel Methylation Panel for the Early Detection of Colorectal Tumors in Stool DNA
    Azuara, Daniel
    Rodriguez-Moranta, Francisco
    de Oca, Javier
    Soriano-Izquierdo, Antonio
    Mora, Josefina
    Guardiola, Jordi
    Biondo, Sebastiano
    Blanco, Ignacio
    Peinado, Miguel Angel
    Moreno, Victor
    Esteller, Manel
    Capella, Gabriel
    [J]. CLINICAL COLORECTAL CANCER, 2010, 9 (03) : 168 - 176
  • [6] CpGassoc: an R function for analysis of DNA methylation microarray data
    Barfield, Richard T.
    Kilaru, Varun
    Smith, Alicia K.
    Conneely, Karen N.
    [J]. BIOINFORMATICS, 2012, 28 (09) : 1280 - 1281
  • [7] Barturen Guillermo, 2013, F1000Res, V2, P217, DOI 10.12688/f1000research.2-217.v1
  • [8] High density DNA methylation array with single CpG site resolution
    Bibikova, Marina
    Barnes, Bret
    Tsan, Chan
    Ho, Vincent
    Klotzle, Brandy
    Le, Jennie M.
    Delano, David
    Zhang, Lu
    Schroth, Gary P.
    Gunderson, Kevin L.
    Fan, Jian-Bing
    Shen, Richard
    [J]. GENOMICS, 2011, 98 (04) : 288 - 295
  • [9] Quantitative comparison of genome-wide DNA methylation mapping technologies
    Bock, Christoph
    Tomazou, Eleni M.
    Brinkman, Arie B.
    Mueller, Fabian
    Simmer, Femke
    Gu, Hongcang
    Jaeger, Natalie
    Gnirke, Andreas
    Stunnenberg, Hendrik G.
    Meissner, Alexander
    [J]. NATURE BIOTECHNOLOGY, 2010, 28 (10) : 1106 - U196
  • [10] Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine
    Booth, Michael J.
    Ost, Tobias W. B.
    Beraldi, Dario
    Bell, Neil M.
    Branco, Miguel R.
    Reik, Wolf
    Balasubramanian, Shankar
    [J]. NATURE PROTOCOLS, 2013, 8 (10) : 1841 - 1851