Glycolytic-methylglyoxal pathway -: Molecular evolution and stress response of glyoxalase I in Saccharomyces cerevisiae

被引:14
|
作者
Inoue, Y [1 ]
Kimura, A [1 ]
机构
[1] Kyoto Univ, Food Sci Res Inst, Kyoto 6110011, Japan
关键词
glyoxalase I; methylglyoxal; Saccharomyces cerevisiae; gene duplication; molecular evolution; stress response; MAP kinase; glutathione;
D O I
10.2183/pjab.75.127
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Methylglyoxal is an endogenous cytotoxic compound formed as a byproduct of glycolysis. We systematically analyzed the metabolic fate of methylglyoxal in various microorganisms and found that glyoxalase I is a ubiquitous and critical enzyme for its detoxification. We found that glyoxalase I consists of five segments (regions I-V) which are conserved among the glyoxalase Is of various species. We hypothesize that yeast glyoxalase I evolved by gene duplication and here show supporting evidence. We also found that expression of the structural gene for the glyoxalase I of S. cerevisiae is induced by osmotic stress through the HOG-MAG kinase signaling pathway. We identified the physiological significance of this glycolytic-methylglyoxal pathway in S, cerevisiae.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 50 条
  • [41] The response of Saccharomyces cerevisiae to heat stress.
    Mensonides, FIC
    Schuurmans, JM
    de Mattos, MJT
    Hellingwerf, KJ
    Brul, S
    YEAST, 2003, 20 : S188 - S188
  • [42] The Mitochondrial Permeability Transition in Saccharomyces Cerevisiae is Controlled by Hexose Phosphates from the Glycolytic Pathway
    Rosas-Lemus, Monica
    Chiquete-Felix, Natalia
    Uribe-Carvajal, Salvador
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 560A - 560A
  • [43] Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions
    Jimenez-Marti, E.
    Zuzuarregui, A.
    Gomar-Alba, M.
    Gutierrez, D.
    Gil, C.
    del Olmo, M.
    INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2011, 145 (01) : 211 - 220
  • [44] Identification of a calcineurin-independent pathway required for sodium ion stress response in Saccharomyces cerevisiae
    Ganster, RW
    McCartney, RR
    Schmidt, MC
    GENETICS, 1998, 150 (01) : 31 - 42
  • [45] Effect of the SNF1 Deletion in the Glycolytic Pathway of Saccharomyces cerevisiae Grown at 1% Glucose
    Martinez-Ortiz, Cecilia
    Dufoo-Hurtado, Miguel David
    Madrigal-Perez, Luis Alberto
    FASEB JOURNAL, 2019, 33
  • [46] Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae
    Hayashi, Michio
    Maeda, Tatsuya
    JOURNAL OF BIOCHEMISTRY, 2006, 139 (04): : 797 - 803
  • [47] Effect of environmental stress on radiation response of Saccharomyces cerevisiae
    Singh, RK
    Verma, NC
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 1999, 36 (05): : 296 - 298
  • [48] The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae
    Morano, Kevin A.
    Grant, Chris M.
    Moye-Rowley, W. Scott
    GENETICS, 2012, 190 (04) : 1157 - 1195
  • [49] Response of Saccharomyces cerevisiae to stress-free acidification
    Allen Kuan-Liang Chen
    Cristy Gelling
    Peter L. Rogers
    Ian W. Dawes
    Bettina Rosche
    The Journal of Microbiology, 2009, 47 : 1 - 8
  • [50] Linearity range of the hyperosmotic stress response in Saccharomyces cerevisiae
    Petelenz-Kurdziel, E.
    Babazadeh, R.
    Beck, C.
    Smedh, M.
    Eriksson, E.
    Goksar, M.
    Hohmann, S.
    FEBS JOURNAL, 2010, 277 : 144 - 145