Glycolytic-methylglyoxal pathway -: Molecular evolution and stress response of glyoxalase I in Saccharomyces cerevisiae

被引:14
|
作者
Inoue, Y [1 ]
Kimura, A [1 ]
机构
[1] Kyoto Univ, Food Sci Res Inst, Kyoto 6110011, Japan
关键词
glyoxalase I; methylglyoxal; Saccharomyces cerevisiae; gene duplication; molecular evolution; stress response; MAP kinase; glutathione;
D O I
10.2183/pjab.75.127
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Methylglyoxal is an endogenous cytotoxic compound formed as a byproduct of glycolysis. We systematically analyzed the metabolic fate of methylglyoxal in various microorganisms and found that glyoxalase I is a ubiquitous and critical enzyme for its detoxification. We found that glyoxalase I consists of five segments (regions I-V) which are conserved among the glyoxalase Is of various species. We hypothesize that yeast glyoxalase I evolved by gene duplication and here show supporting evidence. We also found that expression of the structural gene for the glyoxalase I of S. cerevisiae is induced by osmotic stress through the HOG-MAG kinase signaling pathway. We identified the physiological significance of this glycolytic-methylglyoxal pathway in S, cerevisiae.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 50 条
  • [21] Polymorphisms in Glyoxalase I Gene Are Not Associated with Glyoxalase I Expression in Whole Blood or Markers of Methylglyoxal Stress: The CODAM Study
    Maasen, Kim
    Hanssen, Nordin M. J.
    van der Kallen, Carla J. H.
    Stehouwer, Coen D. A.
    van Greevenbroek, Marleen M. J.
    Schalkwijk, Casper G.
    ANTIOXIDANTS, 2021, 10 (02) : 1 - 12
  • [22] Response of Saccharomyces cerevisiae to chromium stress
    Wang, JL
    Mao, ZY
    Zhao, X
    PROCESS BIOCHEMISTRY, 2004, 39 (10) : 1231 - 1235
  • [23] Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione
    Yadav, SK
    Singla-Pareek, SL
    Ray, M
    Reddy, MK
    Sopory, SK
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 337 (01) : 61 - 67
  • [24] DEUTERIUM ISOTOPE EFFECTS IN FERMENTATION OF HEXOSES TO ETHANOL BY SACCHAROMYCES CEREVISIAE .I. HYDROGEN EXCHANGE IN GLYCOLYTIC PATHWAY
    SAUR, WK
    CRESPI, HL
    HALEVI, EA
    KATZ, JJ
    BIOCHEMISTRY, 1968, 7 (10) : 3529 - &
  • [25] Molecular tools for pathway engineering in Saccharomyces cerevisiae
    Besada-Lombana, Pamela B.
    McTaggart, Tami L.
    Da Silva, Nancy A.
    CURRENT OPINION IN BIOTECHNOLOGY, 2018, 53 : 39 - 49
  • [26] Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene
    Hossain, Mohammad Anwar
    Hossain, Mohammad Zakir
    Fujita, Masayuki
    AUSTRALIAN JOURNAL OF CROP SCIENCE, 2009, 3 (02) : 53 - 64
  • [27] Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae
    Yamada, Ryosuke
    Wakita, Kazuki
    Ogino, Hiroyasu
    ACS SYNTHETIC BIOLOGY, 2017, 6 (04): : 659 - 666
  • [28] THE GLYOXALASE PATHWAY OF SACCHAROMYCES-CEREVISIAE - A PLAUSIBLE DETOXIFYING ROLE FOR GLUTATHIONE IN THE METABOLISM OF GLYCEROL
    JASPERS, C
    PENNINCKX, M
    ARCHIVES INTERNATIONALES DE PHYSIOLOGIE DE BIOCHIMIE ET DE BIOPHYSIQUE, 1982, 90 (01): : B40 - B41
  • [29] THE PHEROMONE RESPONSE PATHWAY IN SACCHAROMYCES-CEREVISIAE
    KURJAN, J
    ANNUAL REVIEW OF GENETICS, 1993, 27 : 147 - 179
  • [30] A Saccharomyces cerevisiae mutant, tolerant to multiple stress conditions affected in the general stress response pathway
    Garay-Arroyo, A
    Clark, I
    Peimbert, R
    Reyes, JL
    Lledias, F
    Covarrubias, AA
    YEAST, 2003, 20 : S202 - S202