Mapping physical problems on fractals onto boundary value problems within continuum framework

被引:31
作者
Balankin, Alexander S. [1 ]
机构
[1] Inst Politecn Nacl, ESIME Zacatenco, Grp Mecan Fractal, Mexico City 07738, DF, Mexico
关键词
Fractal materials; Physics on fractals; Fractional-dimensional space; Fractal metric; Electromagnetic fields; TOPOLOGICAL HAUSDORFF DIMENSION; VECTOR CALCULUS; SPACE; MECHANICS; EQUATIONS; FRACTURE; MODELS; FIELDS; MOTION; CRACKS;
D O I
10.1016/j.physleta.2017.11.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we emphasize that methods of fractal homogenization should take into account a loop structure of the fractal, as well as its connectivity and geodesic metric. The fractal attributes can be quantified by a set of dimension numbers. Accordingly, physical problems on fractals can be mapped onto the boundary values problems in the fractional-dimensional space with metric induced by the fractal topology. The solutions of these problems represent analytical envelopes of non-analytical functions defined on the fractal. Some examples are briefly discussed. The interplay between effects of fractal connectivity, loop structure, and mass distributions on electromagnetic fields in fractal media is highlighted. The effects of fractal connectivity, geodesic metric, and loop structure are outlined. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 72 条
  • [11] A continuum framework for mechanics of fractal materials II: elastic stress fields ahead of cracks in a fractal medium
    Balankin, Alexander S.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (04)
  • [12] Reply to "Comment on 'Hydrodynamics of fractal continuum flow' and 'Map of fluid flow in fractal porous medium into fractal continuum flow'"
    Balankin, Alexander S.
    Espinoza Elizarraraz, Benjamin
    [J]. PHYSICAL REVIEW E, 2013, 88 (05):
  • [13] Stresses and strains in a deformable fractal medium and in its fractal continuum model
    Balankin, Alexander S.
    [J]. PHYSICS LETTERS A, 2013, 377 (38) : 2535 - 2541
  • [14] Physics in space-time with scale-dependent metrics
    Balankin, Alexander S.
    [J]. PHYSICS LETTERS A, 2013, 377 (25-27) : 1606 - 1610
  • [15] Fractal features of a crumpling network in randomly folded thin matter and mechanics of sheet crushing
    Balankin, Alexander S.
    Horta Rangel, Antonio
    Garcia Perez, Gregorio
    Gayosso Martinez, Felipe
    Sanchez Chavez, Hugo
    Martinez-Gonzalez, Claudia L.
    [J]. PHYSICAL REVIEW E, 2013, 87 (05):
  • [16] Electromagnetic fields in fractal continua
    Balankin, Alexander S.
    Mena, Baltasar
    Patino, Julian
    Morales, Daniel
    [J]. PHYSICS LETTERS A, 2013, 377 (10-11) : 783 - 788
  • [17] Random walk in chemical space of Cantor dust as a paradigm of superdiffusion
    Balankin, Alexander S.
    Mena, Baltasar
    Martinez-Gonzalez, C. L.
    Morales Matamoros, Daniel
    [J]. PHYSICAL REVIEW E, 2012, 86 (05)
  • [18] Map of fluid flow in fractal porous medium into fractal continuum flow
    Balankin, Alexander S.
    Espinoza Elizarraraz, Benjamin
    [J]. PHYSICAL REVIEW E, 2012, 85 (05):
  • [19] Stress concentration and size effect in fracture of notched heterogeneous material
    Balankin, Alexander S.
    Susarrey, Orlando
    Mora Santos, Carlos A.
    Patino, Julian
    Yoguez, Amalia
    Garcia, Edgar I.
    [J]. PHYSICAL REVIEW E, 2011, 83 (01):
  • [20] Entropic rigidity of a crumpling network in a randomly folded thin sheet
    Balankin, Alexander S.
    Huerta, Orlando Susarrey
    [J]. PHYSICAL REVIEW E, 2008, 77 (05):