Spectroscopic and SEM studies of SWNTs: Polymer solutions and films

被引:32
作者
Karachevtsev, VA
Glamazda, AY
Dettlaff-Weglikowska, U
Leontiev, VS
Mateichenko, PV
Roth, S
Rao, AM
机构
[1] Natl Acad Sci Ukraine, Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine
[2] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[3] Natl Acad Sci Ukraine, Inst Single Crystals, UA-61103 Kharkov, Ukraine
[4] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
carbon nanotubes; Raman spectroscopy; scanning electron microscopy; photons; biocompatibility;
D O I
10.1016/j.carbon.2005.08.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Raman spectra of SWNTs suspended in aqueous solutions containing fragmented single-stranded DNA (SWNT:DNA), and films obtained from this suspension have been obtained. SEM study of the dried films indicated that the nanotubes tend to aggregate into bundles which results in the enhancement of the Raman intensity of the G(-) tangential band, and an upshift and broadening of the G(+) band. The intensity of radial breathing modes of metallic SWNTs is higher in the SWNT:DNA films as compared to that of the SWNT:DNA solution. The Raman spectra of SWNT:PVP and SWNT:agaroza samples exhibit similar changes as the SWNT:DNA samples when films are cast from the corresponding solutions. Both films and the solution forms of SWNT:DNA yield luminescence spectra which indicates the presence of individual tubes or small bundles in the films. The luminescence bands of SWNT:DNA films are relatively wider and is attributed to the interaction of DNA with the nanotube surface in the solid state. (c) 2005 Published by Elsevier Ltd.
引用
收藏
页码:1292 / 1297
页数:6
相关论文
共 33 条
[11]   High weight fraction surfactant solubilization of single-wall carbon nanotubes in water [J].
Islam, MF ;
Rojas, E ;
Bergey, DM ;
Johnson, AT ;
Yodh, AG .
NANO LETTERS, 2003, 3 (02) :269-273
[12]  
Jiang CY, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.161404
[13]   Raman spectroscopy of HiPCO single-walled carbon nanotubes at 300 and 5 K [J].
Karachevtseva, VA ;
Glamazda, AY ;
Dettlaff-Weglikowska, U ;
Kurnosov, VS ;
Obraztsova, ED ;
Peschanskii, AV ;
Eremenko, VV ;
Roth, S .
CARBON, 2003, 41 (08) :1567-1574
[14]   Optical properties of single-wall carbon nanotubes [J].
Kataura, H ;
Kumazawa, Y ;
Maniwa, Y ;
Umezu, I ;
Suzuki, S ;
Ohtsuka, Y ;
Achiba, Y .
SYNTHETIC METALS, 1999, 103 (1-3) :2555-2558
[15]   A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process [J].
Kukovecz, A ;
Kramberger, C ;
Georgakilas, V ;
Prato, M ;
Kuzmany, H .
EUROPEAN PHYSICAL JOURNAL B, 2002, 28 (02) :223-230
[16]   DNA-directed self-assembling of carbon nanotubes [J].
Li, SN ;
He, PG ;
Dong, JH ;
Guo, ZX ;
Dai, LM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (01) :14-15
[17]   Glucose biosensors based on carbon nanotube nanoelectrode ensembles [J].
Lin, YH ;
Lu, F ;
Tu, Y ;
Ren, ZF .
NANO LETTERS, 2004, 4 (02) :191-195
[18]   Selectivity of chemical oxidation attack of single-wall carbon nanotubes in solution [J].
Menna, E ;
Della Negra, F ;
Dalla Fontana, M ;
Meneghetti, M .
PHYSICAL REVIEW B, 2003, 68 (19)
[19]   Individually suspended single-walled carbon nanotubes in various surfactants [J].
Moore, VC ;
Strano, MS ;
Haroz, EH ;
Hauge, RH ;
Smalley, RE ;
Schmidt, J ;
Talmon, Y .
NANO LETTERS, 2003, 3 (10) :1379-1382
[20]   Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide [J].
Nikolaev, P ;
Bronikowski, MJ ;
Bradley, RK ;
Rohmund, F ;
Colbert, DT ;
Smith, KA ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1999, 313 (1-2) :91-97