Understanding regulatory networks and engineering for enhanced drought tolerance in plants

被引:550
|
作者
Valliyodan, B
Nguyen, HT [1 ]
机构
[1] Univ Missouri, Div Plant Sci, Columbia, MO 65211 USA
[2] Univ Missouri, Natl Ctr Soybean Biotechnol, Columbia, MO 65211 USA
关键词
D O I
10.1016/j.pbi.2006.01.019
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought stress is one of the major limitations to crop productivity. To develop crop plants with enhanced tolerance of drought stress, a basic understanding of physiological, biochemical and gene regulatory networks is essential. Various functional genomics tools have helped to advance our understanding of stress signal perception and transduction, and of the associated molecular regulatory network. These tools have revealed several stress-inducible genes and various transcription factors that regulate the drought-stress-inducible systems. Translational genomics of these candidate genes using model plants provided encouraging results, but the field testing of transgenic crop plants for better performance and yield is still minimal. Better understanding of the specific roles of various metabolites in crop stress tolerance will give rise to a strategy for the metabolic engineering of crop tolerance of drought.
引用
收藏
页码:189 / 195
页数:7
相关论文
共 50 条
  • [41] Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach
    Zhang, Ning
    Si, Huai-Jun
    Wen, Gang
    Du, Hong-Hui
    Liu, Bai-Lin
    Wang, Di
    PLANT BIOTECHNOLOGY REPORTS, 2011, 5 (01) : 71 - 77
  • [42] Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice
    Todaka, Daisuke
    Nakashima, Kazuo
    Shinozaki, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    RICE, 2012, 5 : 1 - 9
  • [43] Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice
    Daisuke Todaka
    Kazuo Nakashima
    Kazuo Shinozaki
    Kazuko Yamaguchi-Shinozaki
    Rice, 2012, 5
  • [44] Engineering salt tolerance in plants
    Blumwald, E
    BIOTECHNOLOGY & GENETIC ENGINEERING REVIEWS, VOL 20, 2003, 20 : 261 - 275
  • [45] Engineering salt tolerance in plants
    Apse, MP
    Blumwald, E
    CURRENT OPINION IN BIOTECHNOLOGY, 2002, 13 (02) : 146 - 150
  • [46] The regulatory role of phytohormones in plant drought tolerance
    Liao, Zhenqi
    Chen, Beibei
    Boubakri, Hatem
    Farooq, Muhammad
    Mur, Luis Alejandro Jose
    Urano, Daisuke
    Teo, Chee How
    Tan, Boon Chin
    Hasan, M. D. Mahadi
    Aslam, Mehtab Muhammad
    Tahir, Muhammad Yahya
    Fan, Junliang
    PLANTA, 2025, 261 (05)
  • [47] Engineering the future. Development of transgenic plants with enhanced tolerance to adverse environments
    Zurbriggen, Matias D.
    Hajirezaei, Mohammad-Reza
    Carrillo, Nestor
    BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, VOL 27, 2010, 27 : 33 - 55
  • [48] Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression
    Mackova, Hana
    Hronkova, Marie
    Dobra, Jana
    Tureckova, Veronika
    Novak, Ondrej
    Lubovska, Zuzana
    Motyka, Vaclav
    Haisel, Daniel
    Hajek, Tomas
    Prasil, Ilja Tom
    Gaudinova, Alena
    Storchova, Helena
    Ge, Eva
    Werner, Tomas
    Schmuelling, Thomas
    Vankova, Radomira
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (10) : 2805 - 2815
  • [49] Engineering the future. Development of transgenic plants with enhanced tolerance to adverse environments
    Zurbriggen, Matias D.
    Hajirezaei, Mohammad-Reza
    Carrillo, Nestor
    Biotechnology and Genetic Engineering Reviews, 2010, 27 : 33 - 55
  • [50] Drought tolerance induced by sound in Arabidopsis plants
    Lopez-Ribera, Ignacio
    Vicient, Carlos M.
    PLANT SIGNALING & BEHAVIOR, 2017, 12 (10)