[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源:
ANALYSIS & PDE
|
2012年
/
5卷
/
05期
关键词:
nonlinear Schrodinger equation;
supercritical NLS;
random data;
Gibbs measure;
global well-posedness;
GLOBAL WELL-POSEDNESS;
DATA CAUCHY-THEORY;
INVARIANT-MEASURES;
D O I:
10.2140/apde.2012.5.913
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study radial solutions of a certain two-dimensional nonlinear Schrodinger (NLS) equation with harmonic potential, which is supercritical with respect to the initial data. By combining the nonlinear smoothing effect of Schrodinger equation with L-p estimates of Laguerre functions, we are able to prove an almost-sure global well-posedness result and the invariance of the Gibbs measure. We also discuss an application to the NLS equation without harmonic potential.
引用
收藏
页码:913 / 960
页数:48
相关论文
共 27 条
[1]
[Anonymous], 1975, AM MATH SOC C PUBLIC
[2]
[Anonymous], 1993, LECT HERMITE LAGUERR
[3]
Askey R., 1965, Amer.J. Math, V87, P695, DOI DOI 10.2307/2373069