Vadose Zone Model-Data Fusion: State of the Art and Future Challenges

被引:2
|
作者
Huisman, Johan A. [1 ]
Vrugt, Jasper A. [2 ,4 ]
Ferre, Ty P. A. [3 ]
机构
[1] Forschungszentrum Julich, Agrosphere, D-52425 Julich, Germany
[2] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
[3] Univ Arizona, Tucson, AZ USA
[4] Univ Amsterdam, IBED, NL-1012 WX Amsterdam, Netherlands
来源
VADOSE ZONE JOURNAL | 2012年 / 11卷 / 04期
关键词
UNCERTAINTY ASSESSMENT; PARAMETERS;
D O I
10.2136/vzj2012.0140
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Models are quantitative formulations of assumptions regarding key physical processes, their mathematical representations, and site-specific relevant properties at a particular scale of analysis. Models are fused with data in a two-way process that uses information contained in observational data to refine models and the context provided by models to improve information extraction from observational data. This process of model data fusion leads to improved understanding of hydrological processes by providing improved estimates of parameters, fluxes, and states of the vadose zone system of interest, as well as of the associated uncertainties of these values. Notwithstanding recent progress, there are still numerous challenges associated with model-data fusion, including: (i) dealing with the increasing complexity of models, (ii) considering new and typically indirect measurements, and (iii) quantifying uncertainty. This special section presents nine contributions that address the state of the art of model-data fusion.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Terrestrial carbon cycle model-data fusion: Progress and challenges
    Li, Xin
    Ma, Hanqing
    Ran, Youhua
    Wang, Xufeng
    Zhu, Gaofeng
    Liu, Feng
    He, Honglin
    Zhang, Zhen
    Huang, Chunlin
    SCIENCE CHINA-EARTH SCIENCES, 2021, 64 (10) : 1645 - 1657
  • [2] Terrestrial carbon cycle model-data fusion: Progress and challenges
    Xin Li
    Hanqing Ma
    Youhua Ran
    Xufeng Wang
    Gaofeng Zhu
    Feng Liu
    Honglin He
    Zhen Zhang
    Chunlin Huang
    Science China Earth Sciences, 2021, 64 : 1645 - 1657
  • [3] Terrestrial carbon cycle model-data fusion: Progress and challenges
    Xin LI
    Hanqing MA
    Youhua RAN
    Xufeng WANG
    Gaofeng ZHU
    Feng LIU
    Honglin HE
    Zhen ZHANG
    Chunlin HUANG
    ScienceChina(EarthSciences), 2021, 64 (10) : 1645 - 1657
  • [4] The future of Earth system prediction: Advances in model-data fusion
    Gettelman, Andrew
    Geer, Alan J.
    Forbes, Richard M.
    Carmichael, Greg R.
    Feingold, Graham
    Posselt, Derek J.
    Stephens, Graeme L.
    van den Heever, Susan C.
    Varble, Adam C.
    Zuidema, Paquita
    SCIENCE ADVANCES, 2022, 8 (14)
  • [5] Data Warehouse State of the art and future challenges
    El Moukhi, Nawfal
    El Azami, Ikram
    Mouloudi, Aziz
    2015 INTERNATIONAL CONFERENCE ON CLOUD TECHNOLOGIES AND APPLICATIONS (CLOUDTECH 15), 2015, : 306 - 311
  • [6] Global archaeomagnetic data: The state of the art and future challenges
    Brown, Maxwell C.
    Hervé, Gwenaël
    Korte, Monika
    Genevey, Agnès
    Physics of the Earth and Planetary Interiors, 2021, 318
  • [7] Global archaeomagnetic data: The state of the art and future challenges
    Brown, Maxwell C.
    Herve, Gwenael
    Korte, Monika
    Genevey, Agnes
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2021, 318
  • [8] Process models and model-data fusion in dendroecology
    Guiot, Joel
    Boucher, Etienne
    Gea-Izquierdo, Guillermo
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2014, 2
  • [9] Model-Data Ecosystems: Challenges, Tools, and Trends
    Haas, Peter J.
    PODS'14: PROCEEDINGS OF THE 33RD ACM SIGMOD-SIGACT-SIGART SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2014, : 76 - 87
  • [10] Insights into the tussock growth form with model-data fusion
    Curasi, Salvatore R.
    Fetcher, Ned
    Wright, Kelseyann S.
    Weldon, Daniel P.
    Rocha, Adrian V.
    NEW PHYTOLOGIST, 2023, 239 (02) : 562 - 575