Adaptive multi-material topology optimization with hyperelastic materials under large deformations: A virtual element approach

被引:47
作者
Zhang, Xiaojia Shelly [1 ,2 ]
Chi, Heng [3 ]
Paulino, Glaucio H. [4 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[3] Siemens Corp Technol, 755 Coll Rd E, Princeton, NJ 08540 USA
[4] Georgia Inst Technol, Sch Civil & Environm Engn, 790 Atlantic Dr, Atlanta, GA 30332 USA
关键词
Multi-material topology optimization; Hyperelastic materials; Large deformations; ZPR update scheme; Virtual Element Method (VEM); Adaptive refinement and coarsening; STRUCTURAL TOPOLOGY; SHAPE OPTIMIZATION; POLYGONAL MESHES; ELASTICITY; DESIGN; ALGORITHM; FORMULATIONS; VOLUME; SCHEME;
D O I
10.1016/j.cma.2020.112976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a general multi-material topology optimization framework for large deformation problems that effectively handles an arbitrary number of candidate hyperelastic materials and addresses three major associated challenges: material interpolation, excessive distortion of low-density elements, and computational efficiency. To account for many nonlinear elastic materials, we propose a material interpolation scheme that, instead of interpolating multiple material parameters (such as Young's modulus), interpolates multiple nonlinear stored-energy functions. To circumvent convergence difficulties caused by excessive distortions of low-density elements under large deformations, an energy interpolation scheme is revisited to account for multiple candidate hyperelastic materials. Computational efficiency is addressed from both structural analysis and optimization perspectives. To solve the nonlinear state equations efficiently, we employ the lower-order Virtual Element Method in conjunction with tailored adaptive mesh refinement and coarsening strategies. To efficiently update the design variables of the multi-material system, we exploit the separable nature and improve the ZPR (Zhang-Paulino-Ramos) update scheme to account for positive sensitivities and update the design variables associated with each volume constraint in parallel. Four design examples with three types of nonlinear material models demonstrate the efficiency and effectiveness of the proposed framework. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:34
相关论文
共 92 条
  • [1] Phase-field modeling of brittle fracture using an efficient virtual element scheme
    Aldakheel, Fadi
    Hudobivnik, Blaz
    Hussein, Ali
    Wriggers, Peter
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 443 - 466
  • [2] Antonietti P., 2018, FULLY NONCONFORMING, V23, P387
  • [3] On the virtual element method for topology optimization on polygonal meshes: A numerical study
    Antonietti, P. F.
    Bruggi, M.
    Scacchi, S.
    Verani, M.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (05) : 1091 - 1109
  • [4] Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem
    Artioli, E.
    da Veiga, L. Beirao
    Lovadina, C.
    Sacco, E.
    [J]. COMPUTATIONAL MECHANICS, 2017, 60 (04) : 643 - 657
  • [5] Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem
    Artioli, E.
    da Veiga, L. Beirao
    Lovadina, C.
    Sacco, E.
    [J]. COMPUTATIONAL MECHANICS, 2017, 60 (03) : 355 - 377
  • [6] A stress/displacement Virtual Element method for plane elasticity problems
    Artioli, E.
    de Miranda, S.
    Lovadina, C.
    Patruno, L.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 325 : 155 - 174
  • [7] Bendse MP., 2003, Topology Optimization
  • [8] Joakim Petersson 1968-2002 - Obituary
    Bendsoe, MP
    Klarbring, A
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2003, 25 (03) : 151 - 152
  • [9] Material interpolation schemes in topology optimization
    Bendsoe, MP
    Sigmund, O
    [J]. ARCHIVE OF APPLIED MECHANICS, 1999, 69 (9-10) : 635 - 654
  • [10] Bonet J, 2008, NONLINEAR CONTINUUM MECHANICS FOR FINITE ELEMENT ANALYSIS, 2ND EDITION, P1, DOI 10.1017/CBO9780511755446