Linear complementary pair of group codes over finite chain rings

被引:12
作者
Guneri, Cem [1 ]
Martinez-Moro, Edgar [2 ]
Sayici, Selcen [1 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[2] Univ Valladolid, Inst Math, Castilla, Spain
关键词
LCP of codes; Group codes; Finite chain rings; Code equivalence;
D O I
10.1007/s10623-020-00792-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Linear complementary dual (LCD) codes and linear complementary pair (LCP) of codes over finite fields have been intensively studied recently due to their applications in cryptography, in the context of side channel and fault injection attacks. The security parameter for an LCP of codes (C, D) is defined as the minimum of the minimum distances d(C) and d(D-perpendicular to). It has been recently shown that if C and D are both 2-sided group codes over a finite field, then C and D-perpendicular to are permutation equivalent. Hence the security parameter for an LCP of 2-sided group codes (C, D) is simply d(C). We extend this result to 2-sided group codes over finite chain rings.
引用
收藏
页码:2397 / 2405
页数:9
相关论文
共 12 条
[1]  
Bhasin S., 2015, IEEE INT S HARDW OR
[2]   Do non-free LCD codes over finite commutative Frobenius rings exist? [J].
Bhowmick, Sanjit ;
Fotue-Tabue, Alexandre ;
Martinez-Moro, Edgar ;
Bandi, Ramakrishna ;
Bagchi, Satya .
DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) :825-840
[3]   A note on linear complementary pairs of group codes [J].
Borello, Martino ;
de la Cruz, Javier ;
Willems, Wolfgang .
DISCRETE MATHEMATICS, 2020, 343 (08)
[4]  
Bringer J, 2014, LECT NOTES COMPUT SC, V8501, P40, DOI 10.1007/978-3-662-43826-8_4
[5]   On Linear Complementary Pairs of Codes [J].
Carlet, Claude ;
Guneri, Cem ;
Ozbudak, Ferruh ;
Ozkaya, Buket ;
Sole, Patrick .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) :6583-6589
[6]   On Linear Complementary Pair of nD Cyclic Codes [J].
Guneri, Cem ;
Ozkaya, Buket ;
Sayici, Selcen .
IEEE COMMUNICATIONS LETTERS, 2018, 22 (12) :2404-2406
[7]   PROJECTIVE MODULES [J].
KAPLANSKY, I .
ANNALS OF MATHEMATICS, 1958, 68 (02) :372-377
[8]   LCD codes over finite chain rings [J].
Liu, Xiusheng ;
Liu, Hualu .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 :1-19
[9]   Linear complementary dual codes over rings [J].
Liu, Zihui ;
Wang, Jinliang .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (12) :3077-3086
[10]   LINEAR CODES WITH COMPLEMENTARY DUALS [J].
MASSEY, JL .
DISCRETE MATHEMATICS, 1992, 106 :337-342