Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

被引:24
作者
Hamoud, Ahmed A. [1 ,2 ]
Ghadle, Kirtiwant P. [1 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, Maharashtra, India
[2] Taiz Univ, Dept Math, Taizi, Yemen
来源
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS | 2019年 / 5卷 / 01期
关键词
Modified Adomian Decomposition Method; Modified Variational Iteration Method; Caputo Fractional Volterra-Fredholm Integro-Differential Equation;
D O I
10.22055/jacm.2018.25397.1259
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on their reliability and reduction in the size of the computational work. This study provides an analytical approximate to determine the behavior of the solution. It proves the existence and uniqueness results and convergence of the solution. In addition, it brings an example to examine the validity and applicability of the proposed techniques.
引用
收藏
页码:58 / 69
页数:12
相关论文
共 27 条
  • [1] CONVERGENCE OF ADOMIAN METHOD APPLIED TO NONLINEAR EQUATIONS
    ABBAOUI, K
    CHERRUAULT, Y
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1994, 20 (09) : 69 - 73
  • [3] FRACTIONAL CALCULUS OPERATORS AND THEIR IMAGE FORMULAS
    Agarwal, Praveen
    Choi, Junesang
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1183 - 1210
  • [4] Extended Riemann-Liouville fractional derivative operator and its applications
    Agarwal, Praveen
    Choi, Junesang
    Paris, R. B.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 451 - 466
  • [5] AL-Smadi M.H., 2014, Res. J. Appl. Sci. Eng. Technol., V7, P3809, DOI [DOI 10.19026/rjaset.7.738, 10.19026/rjaset.7.738]
  • [6] Alkan S, 2017, TBIL MATH J, V10, P1, DOI 10.1515/tmj-2017-0021
  • [7] [Anonymous], 2009, Neural, Parallel and Scientific Computations
  • [8] [Anonymous], 2018, J INDIAN MATH SOC
  • [9] [Anonymous], 2015, ADV DIFFER EQU
  • [10] [Anonymous], 1881, SOLUTION QUELQUES PR