A multi-objective optimisation algorithm for the hot rolling batch scheduling problem

被引:55
|
作者
Jia, S. J. [1 ,2 ]
Yi, J. [3 ,4 ]
Yang, G. K. [1 ,2 ]
Du, B. [1 ,2 ,4 ]
Zhu, J. [3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai, Peoples R China
[3] Northeastern Univ, Sch Informat Sci & Engn, Shenyang, Peoples R China
[4] Acad Baoshan Iron & Steel Co Ltd, Res Inst Automat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
ant colony optimisation; Pareto optimisation; hot rolling batch scheduling; multi-objective optimisation; ANT COLONY OPTIMIZATION; SYSTEM;
D O I
10.1080/00207543.2011.654138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The hot rolling batch scheduling problem is a hard problem in the steel industry. In this paper, the problem is formulated as a multi-objective prize collecting vehicle routing problem (PCVRP) model. In order to avoid the selection of weight coefficients encountered in single objective optimisation, a multi-objective optimisation algorithm based on Pareto-dominance is used to solve this model. Firstly, the Pareto M????MI?? Ant System (P-MMAS), which is a brand new multi-objective ant colony optimisation algorithm, is proposed to minimise the penalties caused by jumps between adjacent slabs, and simultaneously maximise the prizes collected. Then a multi-objective decision-making approach based on TOPSIS is used to select a final rolling batch from the Pareto-optimal solutions provided by P-MMAS. The experimental results using practical production data from Shanghai Baoshan Iron & Steel Co., Ltd. have indicated that the proposed model and algorithm are effective and efficient.
引用
收藏
页码:667 / 681
页数:15
相关论文
共 50 条
  • [31] Multi-objective comprehensive teaching algorithm for multi-objective optimisation design of permanent magnet synchronous motor
    Sun, Changle
    Wen, Feng
    Xiong, Wei
    Wang, Haitao
    Shang, Hongxu
    IET ELECTRIC POWER APPLICATIONS, 2020, 14 (13) : 2564 - 2576
  • [32] Multi-Objective Optimisation of the Benchmark Wind Farm Layout Problem
    Manikowski, Pawel L.
    Walker, David J.
    Craven, Matthew J.
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (12)
  • [33] A multi-objective optimisation evolutionary approach for the Multidimensional Scaling Problem
    Giglio, Juan
    Inostroza-Ponta, Mario
    Villalobos-Cid, Manuel
    2019 38TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2019,
  • [34] Improved solutions to a TEAM problem for multi-objective optimisation in magnetics
    Di Barba, Paolo
    Mognaschi, Maria Evelina
    Lowther, David A.
    Sykulski, Jan K.
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2020, 14 (08) : 964 - 968
  • [35] THE HOT-ROLLING BATCH SCHEDULING METHOD BASED ON THE PRIZE COLLECTING VEHICLE ROUTING PROBLEM
    Zhang, Tao
    Chaovalitwongse, W. Art
    Zhang, Yue-Jie
    Pardalos, P. M.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2009, 5 (04) : 749 - 765
  • [36] Multi-objective optimisation of multipass turning by using a genetic algorithm
    Quiza Sardinas, Ramon
    Albelo Mengana, Jorge E.
    Davim, J. Paulo
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2009, 35 (1-2) : 134 - 144
  • [37] Multi-objective tunicate search optimisation algorithm for numerical problems
    Kumar, Vijay
    Sharma, Isha
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2022, 10 (02) : 119 - 144
  • [38] Adaptive bacterial colony chemotaxis multi-objective optimisation algorithm
    Meng, Guo-yan
    Hu, Yu-lan
    Tian, Yun
    Zhao, Qing-Shan
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2014, 5 (04) : 336 - 345
  • [39] An improved bacterial colony chemotaxis multi-objective optimisation algorithm
    Zhao, Qing-shan
    Hu, Yu-lan
    Tian, Yun
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2013, 4 (04) : 392 - 401
  • [40] Stochastic Multi-objective Optimisation of Exoskeleton Structures
    Reggio, Anna
    Greco, Rita
    Marano, Giuseppe Carlo
    Ferro, Giuseppe Andrea
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 187 (03) : 822 - 841