A multi-objective optimisation algorithm for the hot rolling batch scheduling problem

被引:55
|
作者
Jia, S. J. [1 ,2 ]
Yi, J. [3 ,4 ]
Yang, G. K. [1 ,2 ]
Du, B. [1 ,2 ,4 ]
Zhu, J. [3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai, Peoples R China
[3] Northeastern Univ, Sch Informat Sci & Engn, Shenyang, Peoples R China
[4] Acad Baoshan Iron & Steel Co Ltd, Res Inst Automat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
ant colony optimisation; Pareto optimisation; hot rolling batch scheduling; multi-objective optimisation; ANT COLONY OPTIMIZATION; SYSTEM;
D O I
10.1080/00207543.2011.654138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The hot rolling batch scheduling problem is a hard problem in the steel industry. In this paper, the problem is formulated as a multi-objective prize collecting vehicle routing problem (PCVRP) model. In order to avoid the selection of weight coefficients encountered in single objective optimisation, a multi-objective optimisation algorithm based on Pareto-dominance is used to solve this model. Firstly, the Pareto M????MI?? Ant System (P-MMAS), which is a brand new multi-objective ant colony optimisation algorithm, is proposed to minimise the penalties caused by jumps between adjacent slabs, and simultaneously maximise the prizes collected. Then a multi-objective decision-making approach based on TOPSIS is used to select a final rolling batch from the Pareto-optimal solutions provided by P-MMAS. The experimental results using practical production data from Shanghai Baoshan Iron & Steel Co., Ltd. have indicated that the proposed model and algorithm are effective and efficient.
引用
收藏
页码:667 / 681
页数:15
相关论文
共 50 条
  • [1] A multi-objective chemical reaction optimisation algorithm for multi-objective travelling salesman problem
    Bouzoubia, Samira, 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (06): : 87 - 101
  • [2] Multi-objective optimisation of batch distillation processes
    Barakat, Tajalasfia M.
    Fraga, Eric S.
    Sorensen, Eva
    16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 955 - 960
  • [3] Multi-objective optimisation of batch separation processes
    Barakat, Tajalasfia M. M.
    Fraga, Eric S.
    Sorensen, Eva
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2008, 47 (12) : 2303 - 2314
  • [4] A novel particle swarm algorithm for multi-objective optimisation problem
    Zhang, Jiande
    Huang, Chenrong
    Xu, Jinbao
    Lu, Jingui
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2013, 18 (04) : 380 - 386
  • [5] Multi-Objective Optimisation of Hot Forging Processes using a Genetic Algorithm
    Castro, C. F.
    Antonio, C. C.
    Sousa, L. C.
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [6] Multi-objective optimisation of sewer maintenance scheduling
    Draude, Sabrina
    Keedwell, Ed
    Kapelan, Zoran
    Hiscock, Rebecca
    JOURNAL OF HYDROINFORMATICS, 2022, 24 (03) : 574 - 589
  • [7] Bat algorithm for multi-objective optimisation
    Yang, Xin-She
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2011, 3 (05) : 267 - 274
  • [8] Cloud workflow scheduling algorithm based on multi-objective particle swarm optimisation
    Yin, Hongfeng
    Xu, Baomin
    Li, Weijing
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2023, 14 (06) : 583 - 596
  • [9] A decomposition-based hierarchical optimization algorithm for hot rolling batch scheduling problem
    Jia, Shujin
    Zhu, Jun
    Yang, Genke
    Yi, Jian
    Du, Bin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 61 (5-8) : 487 - 501
  • [10] A decomposition-based hierarchical optimization algorithm for hot rolling batch scheduling problem
    Shujin Jia
    Jun Zhu
    Genke Yang
    Jian Yi
    Bin Du
    The International Journal of Advanced Manufacturing Technology, 2012, 61 : 487 - 501