Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic(III) by reduced graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites

被引:218
作者
Benjwal, Poonam [1 ]
Kumar, Manish [2 ]
Chamoli, Pankaj [1 ]
Kar, Kamal K. [1 ,2 ]
机构
[1] Indian Inst Technol, Adv Nanoengn Mat Lab, Mat Sci Programme, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, Dept Mech Engn, Adv Nanoengn Mat Lab, Kanpur 208016, Uttar Pradesh, India
关键词
HYDROTHERMAL SYNTHESIS; ELECTRON-TRANSFER; AQUEOUS-SOLUTION; WATER; REMOVAL; REDUCTION; COMPOSITE; AS(V); DYE; NANOTUBES;
D O I
10.1039/c5ra13689j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reduced graphene oxide (rGO) and metal oxide based binary (rGO-TiO2/rGO-Fe3O4) and ternary (rGOFe(3)O(4)- TiO2) nanocomposites with enhanced photocatalytic and adsorption properties are successfully synthesized by a simple one-step solvothermal process. The microscopy images of the nanocomposites show that the ferric oxide (Fe3O4) and titania (TiO2) nanoparticles are firmly anchored over rGO, which enhances the surface area of the resultant nanocomposites. The as-synthesized nanocomposites are evaluated for the removal of methylene blue dye under UV and visible light irradiation as well as for the adsorption of As(III) from aqueous solution. Compared to binary, the ternary (rGO-Fe3O4-TiO2) nanocomposite exhibits the highest dye degradation efficiency (similar to 100% within 5 minutes). This enhancement is attributed to the synergetic interaction and increase in the surface area of rGO-Fe3O4TiO2. For As(III) adsorption, the adsorption data are obtained by Langmuir and Freundlich adsorption isotherms. Compared to binary nanocomposites, the maximum monolayer adsorption capacity (147.05 mg g(-1)) is observed for rGO-Fe3O4-TiO2. These results reveal that the rGO-Fe3O4-TiO2 nanocomposite has potential application in water/wastewater treatment.
引用
收藏
页码:73249 / 73260
页数:12
相关论文
共 63 条
[1]   Graphene-based photocatalytic composites [J].
An, Xiaoqiang ;
Yu, Jimmy C. .
RSC ADVANCES, 2011, 1 (08) :1426-1434
[2]   Simultaneous photocatalysis and adsorption based removal of inorganic and organic impurities from water by titania/activated carbon/carbonized epoxy nanocomposite [J].
Benjwal, Poonam ;
Kar, Kamal K. .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2015, 3 (03) :2076-2083
[3]   One-step synthesis of Zn doped titania nanotubes and investigation of their visible photocatalytic activity [J].
Benjwal, Poonam ;
Kar, Kamal K. .
MATERIALS CHEMISTRY AND PHYSICS, 2015, 160 :279-288
[4]   Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal [J].
Chandra, Vimlesh ;
Park, Jaesung ;
Chun, Young ;
Lee, Jung Woo ;
Hwang, In-Chul ;
Kim, Kwang S. .
ACS NANO, 2010, 4 (07) :3979-3986
[5]   Adsorption of polyethylene glycol (PEG) from aqueous solution onto hydrophobic zeolite [J].
Chang, CY ;
Tsai, WT ;
Ing, CH ;
Chang, CF .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2003, 260 (02) :273-279
[6]   Self-standing carbon nanotube forest electrodes for flexible supercapacitors [J].
Cherusseri, Jayesh ;
Kar, Kamal K. .
RSC ADVANCES, 2015, 5 (43) :34335-34341
[7]   Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes [J].
Dai, Yunqian ;
Jing, Yao ;
Zeng, Jie ;
Qi, Qi ;
Wang, Chunlong ;
Goldfeld, David ;
Xu, Changhui ;
Zheng, Yingping ;
Sun, Yueming .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (45) :18174-18179
[8]   Hydrothermal synthesis of monodisperse magnetite nanoparticles [J].
Daou, T. J. ;
Pourroy, G. ;
Begin-Colin, S. ;
Greneche, J. M. ;
Ulhaq-Bouillet, C. ;
Legare, P. ;
Bernhardt, P. ;
Leuvrey, C. ;
Rogez, G. .
CHEMISTRY OF MATERIALS, 2006, 18 (18) :4399-4404
[9]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[10]   Electronic transport properties of individual chemically reduced graphene oxide sheets [J].
Gomez-Navarro, Cristina ;
Weitz, R. Thomas ;
Bittner, Alexander M. ;
Scolari, Matteo ;
Mews, Alf ;
Burghard, Marko ;
Kern, Klaus .
NANO LETTERS, 2007, 7 (11) :3499-3503